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Abstract 

 The promising results derived from the Symplicity HTN-1 and HTN-2 trials moved 

catheter-based renal denervation (RDN) on to centre stage as a potent adjuvant tool to lower 

blood pressure (BP) in resistant hypertension by targeting renal and central sympathetic 

activity. However, the Symplicity HTN-3 trial failed to confirm the superiority of RDN in 

reducing BP compared to a sham procedure. Recently, the SPYRAL HTN-OFF MED and 

RADIANCE-HTN SOLO trials, both in drug-naïve hypertensive patients, and the SPYRAL 

HTN-ON MED trial in hypertensive patients on concurrent antihypertensive therapy, 

demonstrated a clinically significant reduction of ambulatory blood pressure in comparison to 

respective sham control groups. Improved trial design, selection of relevant patient cohorts, 

and optimized interventional procedures have likely contributed to these positive and 

promising findings. However, substantial variability in the BP response to renal denervation 

across cohorts of patients can still be observed and it remains a challenging and important 

problem to identify those patients that will respond to the procedure.  

The International Sympathetic Nervous System (SNS) Summit was convened to bring 

together experts in both experimental and clinical medicine relevant to the SNS and its 

modulation. Its aim was to discuss the current clinical evidence base, novel developments in 

our understanding of the interplay between afferent sensory and efferent sympathetic signaling, 

procedural aspects to further optimize treatment efficacy/monitor technical success, pre-

procedural prediction of response, the potential role of nerve regrowth post denervation and 

define best outcome variables.      

Identification of relevant trends in the field and initiation of tailored and combined 

research efforts, both experimentally and clinically, to address these aspects are likely to 

advance this important field further and will provide much-needed evidence to guide the best 
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clinical use of renal denervation for hypertension and other potential applications. This article 

attempts to consolidate the current viewpoints of some experts in the field and proposes 

directions where research energy could be applied in the future to improve the treatment 

outcome and understanding of renal denervation in human hypertension. 

 

Renal Denervation: Current State of The Art 

The initial results from the Symplicity HTN-1 (1) and HTN-2 (2) trials moved catheter-

based renal denervation (RDN) as a novel approach to lower blood pressure on to centre stage 

in cardiovascular medicine. In these initial trials, RDN was demonstrated to be a safe and 

effective in lowering blood pressure (BP) in subjects with resistant hypertension via a reduction 

in renal and central sympathetic activity (3, 4). However, the sham-controlled Symplicity HTN-

3 trial (5) failed to demonstrate superiority of RDN in reducing BP compared to a sham group 

at six months post-procedure. These unexpected findings have been discussed extensively and 

controversially in the literature. The failure of the trial was attributed to several possible 

confounding factors, including issues related to patient selection and medication adherence, 

suboptimal procedural performance, and operator experience, amongst others (6). The 

Symplicity HTN-3 results significantly impacted other research studies and clinical trials in the 

field. It was not rectified until the multicenter, randomized-controlled DENER-HTN study 

showed a clear signal for supremacy of RDN and a standardized stepped-care antihypertensive 

treatment approach over the same standardized stepped-care antihypertensive treatment alone 

in patients with resistant hypertension (7),. Importantly, the prevalence of non-adherence to 

antihypertensive drugs at six months was high (~50%) but not different in the renal denervation 

and control groups (8) in this study.  
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Non-adherence to antihypertensive medications is highly variable over time in clinical 

trials (9, 10). Tomaszewski and colleagues demonstrated that a significant proportion of 

patients in a specialist center show at least some degree of treatment non-adherence and that 

their BP levels correlate well with the degree of non-adherence (11). Furthermore, patients with 

undeclared/unrecognized non-adherence frequently undergo numerous additional (sometimes 

invasive and often expensive) diagnostic tests in specialist centers to identify the causes of their 

apparent poor response to antihypertensive medications. Moreover, patients who are non-

adherent to antihypertensive treatment fail to gain the proven benefits of BP lowering therapy 

and remain at high risk of cardiovascular events. The SPYRAL HTN-ON MED proof-of-

concept randomized trial (12) showed antihypertensive medication adherence ~60% and 

variation for individual patients throughout the study. It suggests that at least some patients do 

not perceive their physician’s advice as the most suitable or ideal option for their condition, 

demonstrating patient preference. In non-adherent antihypertensive treatment patients, RDN 

would be a safe and innovative option once new and consistent evidence arose from RDN trials 

in drug-naïve hypertensive patients regarding BP reduction (13, 14). 

More than a decade after the publication of the original proof-of-concept study and 

perhaps inflated expectations some important recent studies paved the way for resumption of 

investigative interest, including the DENERHTN trial (7), the SPYRAL HTN-OFF MED (13) 

and RADIANCE-HTN SOLO (14) trials, both in drug-naïve hypertensive patients, as well as, 

the SPYRAL HTN-ON MED trial (12) in hypertensive patients on concurrent antihypertensive 

therapy. All demonstrated a clinically significant reduction of ambulatory BP in comparison to 

respective sham control groups (Figure 1). Evidence is therefore now available from 3 

consecutive and adequately designed, randomized, sham-controlled trials confirming the BP-

lowering efficacy of catheter-based RDN approaches (15). 
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With pivotal trials now underway for several RDN devices, such as SPYRAL- 

PIVOTAL, for example, it is perhaps pertinent for the hypertension community to develop 

strategies on exactly how to best allocate the limited resources to ensure the availability of 

RDN for those individuals who are most likely to benefit. To achieve this goal, intensive 

research efforts are required to address the most critical unresolved issues. These issues and 

related recent research findings are discussed below. 

New Insights into RDN-induced BP lowering mechanisms  

Renal Efferent Signaling: The renal efferent nerves are mostly adrenergic. Norepinephrine 

release mediates vasoconstriction of the renal vessels, as well as sodium and water reabsorption 

at renal tubular epithelial cells, and renin discharge from the juxtaglomerular cells (16).  

 The mechanism(s) by which RDN attenuate(s) any form of hypertension is a subject of 

considerable debate. One explanation is that RDN increases renal sodium and water excretion 

and causes a subsequent contraction of blood volume (17) by suppressing sympathetically 

mediated renin secretion and/or sodium reabsorption. However, Foss and colleagues found no 

differences in daily or cumulative sodium and water balance between SHAM and RDN rats 

(18). This is consistent with previous reports that RDN decreases BP in normotensive Sprague 

Dawley rats independent of sodium balance or renin release (19, 20). It is important to note 

that RDN did not affect the salt sensitivity of arterial pressure in Sprague Dawley rats (17) or 

Dahl salt-sensitive (DS) rats. Combined with their findings that afferent renal nerves do not 

play a role in DS rat model, these data suggest that the antihypertensive effect of RDN in the 

DS rat is likely due to reduced activity of the renin-angiotensin system, a reduction in renal 

vascular resistance, or another effect of efferent renal nerve ablation. Further investigation will 

be needed to test these possibilities (21). 
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 Another mechanism may involve the rostral ventrolateral (RVLM) which provides a 

major excitatory drive to efferent RSNA. The level of RSNA is reliant on the neuronal activity 

in sympathetic premotor nuclei in the brainstem and hypothalamus, including the RVLM and 

ventromedial (RVMM) medulla as well the paraventricular nucleus (PVN). The notable 

reduction in BP after the destruction of premotor neurons in the RVLM  is suggestive of its 

importance in the maitenance of arterial pressure. (22).  Inhibition  of renal efferent signalling 

after RDN with downstream effects on the renin-angiotensin-aldosterone cascade and renal 

arteriolar dilatation are likley contributors to the BP lowering efficacy.  

Renal Afferent signalling: Recently, Tsai and colleagues demonstrated in ambulatory canines 

that bilateral RDN, possibly via interrupting afferent innervation, led to  substantial  brain stem 

and bilateral stellate ganglion remodeling, at eight weeks post-procedure (23). These changes 

were associated with reduced 18FDG- uptake in the brainstem, left stellate ganglion nerve 

activity and atrial tachyarrhythmia events. They propose that neural remodeling in the brain 

stem and stellate ganglion may partially explain the described antiarrhythmic effects of RDN 

(23).  

Trans-synaptic degeneration is a phenomenon in the central and peripheral nervous 

system that may remain active both at the level of the insult and in remote brain structures for 

as long as one year after a trauma (24). These progressive alterations may underlie some of the 

long-term functional consequences after initial injury (i.e. RDN) as shown in Figure 2, which 

summarizes the various direct and indirect connections between renal sympathetic nerves and 

the stellate ganglion. Meckler and colleagues showed that only 10% approximately of bilateral 

renal sympathetic neurons in cats originated from the thoracic chain ganglia (stellate through 

T13) (25). Because of the connections between these two structures, RDN may directly result 

in retrograde cell death of some neurons within the stellate ganglion. Furthermore, the 



 
 

8 
 

application of fluorescent dyes in the renal nerves results in fluorescent labeling of some 

sympathetic cell bodies in paravertebral and prevertebral ganglia (26-28).  

Since the sympathetic preganglionic neurons that project to the stellate ganglion are 

dispersed in spinal sections T1-T10 (29), they have ample chances to interrelate with the 

preganglionic cells that link indirectly with sympathetic nerve fibers surrounding the renal 

arteries. However, some other pathways might contribute to trans-synaptic degeneration post-

RDN(23), as the ganglion cells of renal afferent nerves situated in thoracic and lumbar spine 

dorsal root ganglia that link to the posterior and lateral hypothalamic nuclei, as well as, the 

locus ceruleus in the brain stem (30, 31). All these types of connections suggest one cause of 

persistent effects of RDN may be remodeling of the critical brainstem areas and the stellate 

ganglia, and, perhaps, a lowering of the set-point of arterial pressure governed by sympathetic 

networks. 

 

Methods to assess the efficacy of RDN         

Unlike coronary interventions, current renal denervation devices provide no feedback 

to the interventionalist regarding technical success of the procedure. As a consequence, the 

degree of denervation is uncontrolled (32), and inadequate renal denervation was implicated in 

the failure of Symplicity HTN-3 to show a BP benefit (5, 6). Despite more recent positive 

clinical trials (12-14), intra-procedural validation of adequate renal sympathetic and afferent 

nerve ablation remains a fundamental challenge in the field. 

Validation of successful renal denervation in preclinical studies has been achieved in 

four ways: histopathology, direct neural stimulation, reflex elicitation, and passive monitoring. 

While histopathology is considered the gold standard for validation of renal denervation in 

preclinical studies, this approach is unsuitable in patients. The other three modalities are the 
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subject of exciting new technologies which are being translated to the clinic to provide intra-

procedural validation of renal denervation (Figure 3). 

Direct Neural Stimulation of Afferent Renal Nerves:  Available RDN trials have shown that 

the response to the procedure is variable with a proportion of non-responders, i.e., the absence 

of a significant BP reduction, or even BP elevations post-RDN. This could be due merely to 

differing degrees of RDN (i.e. “completeness” of nerve damage, as mentioned above). Another 

possibility is that activity in some renal nerves promotes increases in BP while activity in others 

(especially sympatho-inhibitory afferents) leads to a fall in SNA and BP. Ablation of primarily 

pressor nerves would be expected to produce the largest fall in BP, while damage to mainly 

depressor fibers might even lead to a rise in BP after RDN. In consideration of this, 

identification of “ideal” ablation sites is highly attractive if the anatomy provides spatial 

compartmentalisation of these distinct afferent nerves, which remains unknown. Alternatively, 

there is genuinely a population of patients that do not respond or respond minimally and these 

need to be identified in the future.  

It is possible to activate renal nerves non-invasively using a catheter placed in the renal 

artery. Sites in the renal artery that upon stimulation do not exert an acute BP rise (or even a 

BP fall) may reflect areas of convergence of sympatho-inhibitory (depressor) nerves, the 

ablation of which should ideally be avoided. In contrast, those sites at which stimulation results 

in a clear BP rise would be considered preferential ablation sites. Clearly, with unselected RDN 

the possibility of ablating sympatho-inhibitory (cold spot) or neutral (neutral spot) fibers seems 

likely and may counteract BP lowering effects achieved by ablating hot spots (33)(Figure 4). 

Lu and colleagues reported that renal nerve stimulation promptly increased systolic BP 

>10 mmHg in both proximal and middle regions of the renal artery. However, during the 

stimulation of the distal portions of the renal artery, BP did not increase. Only the proximal 
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“responsive” sites (“hot spots”) were ablated. As a result, targeted selective ablation not only 

prevented a similar BP response with stimulation at the previously responsive sites but also 

attenuated the response to stimulus at the ipsilateral mid-renal arterial sites, suggesting that 

surprisingly, afferents have a dominant role in BP reduction. 

Recently, Tsioufis and colleagues reported the first-in-man study, in which 20 

hypertensive patients underwent renal nerve stimulation (RNS) using the ConfidenHT™ 

system, a device created for this purpose. Bilateral stimulations were performed at 3 to 4 sites 

per artery at 2 and 4 mA. No peri-procedural adverse events occurred. Stimulation with 2 mA 

resulted in a maximum change of 8.3±6.3 mmHg in systolic BP (based on 119 stimulations; 

p<0.001) while stimulating with 4 mA resulted in a maximum variation of 10.1±7.8 mmHg 

(based on 61 stimulations; p<0.001). The mean increase  in stimulus-evoked systolic BP did 

not vary between mid, distal or branch sites when stimulating at 2mA but was significantly 

higher at ostial (23±14 mmHg) than in non-ostial locations (9±7 mmHg) when stimulating at 

4 mA (p=0.003). This suggests that RNS might help in optimizing treatment effect and 

selecting potential responders to renal sympathetic denervation (34). 

The SPYRAL HTN-OFF and ON MED trials showed that a large sequence of ablated 

spots of renal nerves in the main renal artery and its branches by radiofrequency is effective 

and consistent in lowering BPin patients who are drug-naive or treated with antihypertensive 

medications. However, these findings do not oppose the concept of “hot spots,” as the higher 

number of ablated sites may improve the chance of hitting a pressor spot. Moreover, the 

successful denervation through a single circular lesion in the renal artery promoted by the 

endovascular ultrasound used in RADIANCE-HTN SOLO suggests that interruption of the 

nerve in any segment of the renal artery may be sufficient to achieve denervation. 
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Indirect Testing via Reflex Responses: Whereas direct neural stimulation uses energy, reflex 

elicitation uses a physiological stimulus to excite the efferent renal sympathetic nerves, and, 

thus, reflex-mediated vasoconstriction before and after renal denervation is used to assess 

intervention success. In patients, renal sympathetic vasoconstriction has been shown in 

response to mental stress (35), head-up tilt (36), and lower body negative pressure (37), and 

recent reports of isometric handgrip exercise-driven renal vasoconstriction in patients 

undergoing renal denervation are promising. 

Contrasting from direct neural stimulation, reflex elicitation is not painful and thus can 

be performed in conscious patients. It also assesses the integrity of the entire efferent limb of 

the renal sympathetic innervation, avoiding complexities arising from relationships between 

stimulation and denervation loci. However, this modality is unable to assess afferent 

denervation, and the repeatability of reflexes may be impacted by habituation, sensitization, 

and intraprocedural sedative and analgesic medications. 

Passive Monitoring: Passive monitoring techniques detect spontaneous efferent renal 

sympathetic nerve activity or its downstream effects, which are attenuated after successful renal 

denervation. The classic example is renal norepinephrine spillover, which was used to 

demonstrate renal sympathoexcitation in hypertensive patients (38) and to validate renal 

denervation after the procedure in a small group of patients (32). Although renal 

norepinephrine spillover cannot be used broadly for intra-procedural monitoring, new 

technologies based on passive monitoring approaches are being developed. One early-stage 

device detects spontaneous renal sympathetic nerve traffic from within the renal artery lumen 

(Autonomix Medical, Doylestown, PA, USA). Additionally, to overcome the strong and 

confounding influence of autoregulatory mechanisms on traditional measures of renal vascular 

tone (39, 40), novel means of renal sympathetic vascular control are under investigation for 

intra-procedural feedback (39, 41, 42). 
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Unlike the other modalities, this approach does not require a stimulus-response profile, 

which is inherently time-consuming and challenging to reproduce. However, passive 

monitoring techniques are influenced by anything that changes renal sympathetic outflow, 

including patient anxiety, autonomic reflexes, and pharmacological agents used for analgesia 

and sedation.   

Intra-procedural validation of adequate renal sympathetic and afferent nerve ablation is 

a continuing challenge to the field of renal denervation. Efforts to translate direct neural 

stimulation, reflex elicitation, and passive monitoring techniques into clinical technologies 

have considerable momentum. Interventionalists equipped with such technologies may be able 

to perform renal denervation with meaningful feedback, maximizing the efficacy and safety of 

this promising therapy. 

 

Do renal nerves regrow following RDN?    

Booth and colleagues reported that in sheep, functional re-innervation was 

demonstrated by the finding that electrical stimulation of the whole renal nerve resulted in 

normal afferent (increase in mean BP and fall in heart rate) and efferent responses (decreases 

in renal vascular conductance and renal blood flow), in contrast to the lack of responses acutely 

post-RDN (Figure 5) (43). 

Anatomical and biochemical studies indicated that 1 week after catheter-based RDN, 

the renal levels of markers for sympathetic efferent nerves (tissue noradrenaline and 

immunohistochemistry for tyrosine hydroxylase) and afferent sensory nerves 

(immunohistochemistry for calcitonin gene-related peptide) were significantly reduced, but by 

11 months post-RDN the levels had returned to normal in sheep, indicating reinnervation of 

both the sensory afferent nerves and the sympathetic efferent nerves (43). It is currently 
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unknown whether the control of the renal vasculature, renin release and sodium excretion in 

response to changes in RSNA is normal in the re-innervated kidney and whether there are 

changes in the central pathways controlling RSNA following RDN. 

Conversely, Mauriello and colleagues reported evidence of neural sprouting as early as 

five months after kidney transplantation, rising in association with clinical hypertension; in all 

likelihood, nerve sprouting stems from sympathetic ganglia since neural regeneration appears 

to be limited to sympathetic efferent fibers only. Complete peri-adventitial nerve regeneration 

in hypertensive subjects to reach levels in native arteries, being paralleled by worsening of 

hypertension-related lesions in distal arterioles, seems to be achieved within 24 months 

following transplantation. Indeed, nerve density in kidney transplant arteries tends to reach 

levels similar to those in native arteries (44).  

Re-innervation in humans following catheter-based RDN has not been demonstrated, 

which lead us to think about possible mechanisms capable of translating a sustained decrease 

in BP despite re-innervation; these may include decreased intrarenal levels of renin, reduced 

RSNA burst size and burst incidence, owing to changes in central autonomic nuclei. 

 

Methods to predict Responders and Non-Responders to RDN  

 Efforts to recognize patient features that predict the BP response to RDN has mostly 

relied on post-hoc analyses of data from studies assessing the impact of RDN in a broad range 

of drug-resistant hypertensive subjects. This has been done either by matching the magnitude 

of BP response in different groups of individuals (or by classifying them as “responders” or 

“non-responders” to RDN and then comparing the baseline characteristics of the individuals in 

the two groups. The lack of substantial parameters able to predict the response of BP fall to 

RDN turned it into a constant quest for clinicians and interventionists (45, 46). Aspects 
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contributing to the variability of BP response to RDNinclude technical issues with the 

procedure itself or  the measurement of BP, baseline patient physical characteristics, and 

concomitant anti-hypertensive treatments. We suggest that these have all contributed to 

confusing any analysis of predicting relaible indicators of respnding patients. 

 

Clinical parameters: Changes in the office BP or ABPM are appropriate endpoints for clinical 

trials.  However, individual BP response may be a poor indicator of so-called therapy 

responders, due to significant within-patient variability on both office and ambulatory blood 

pressure measurements. Kandzari and colleagues performed a multivariable analysis of the 

participants in the Symplicity HTN-3 trial, identifying predictors of responsiveness to RDN 

such as baseline office SBP ≥180 mmHg, aldosterone antagonist use, non-use of vasodilators, 

and the quantity of ablated spots (6). However, high baseline BP seems to be the only consistent 

predictor of response in RDN trials and this is not unique to RDN. Recently, the SPYRAL 

HTN-OFF MED reported that the higher baseline heart rate was associated with higher BP 

decrease, which may indicate that RDN works better in patients with higher sympathetic to 

vagal balance (assessed in the absence of interfering drugs) (13). In contrast, isolated systolic 

hypertension was associated with lower pressure responses than combined hypertension in 

unmatched post hoc sub-analyses (47), possibly reflecting a more significant “fixed” structural 

component to this type of hypertension. 

 

The potential role of Inflammatory Pathways: There is much evidence that inflammation of 

the vasculature, brain, and kidneys contributes to chronic increases in BP (48-50).  Some 

studies propose that renal inflammation specifically may be directly triggered by amplified 

renal nerve activity (REF).Recently, a study reported that angiotensin II (AngII)-induced 
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hypertension in mice is decreased by RDN and that this is paralleled by reduced renal 

inflammation, which was independent of the BP decrease (51). Since specific ablation of renal 

afferent nerves had no effect on the pathogenesis of hypertension in this study, it was settled 

that the antihypertensive effect of RDN was due to ablation of efferent renal nerve-mediated 

renal inflammation (51). Similarly, Banek and colleagues also reported that RDN attenuates 

hypertension and renal inflammation in the rat deoxycorticosterone acetate (DOCA)-salt model 

(52). Importantly, they also stated that resting afferent nerve discharge is elevated in DOCA-

salt rats and that this is caused by an increase in certain inflammatory cytokines in the kidney 

(52). Another finding by Banek and colleagues was that afferent-specific renal nerve ablation 

attenuated the development of hypertension in this model to the same degree as total RDN (52). 

They concluded that even though renal inflammation may have its onset in efferent renal 

nerves, hypertension was driven by augmented afferent renal nerve traffic, probably secondary 

to renal inflammation (52). A subsequent study from the same group demonstrated that, 

afferent-specific renal nerve ablation also decreased arterial pressure in the established phase 

of DOCA-salt hypertension to the same degree as total RDN (53). However, neither method of 

ablation reversed renal inflammation in the established phase of this model suggesting other 

drivers for the inflammation.  

Even though there is a shortage of clinical studies directly measuring renal inflammation after 

RDN, there are several studies in which peripheral inflammation was evaluated. Kampmann 

and colleagues reported similar cardiovascular and inflammatory responses in hypertensive 

humans that underwent catheter-based RDN, where all measured circulating inflammatory 

cytokines (TNF-α, IL-6, and IL-1β) remained unaffected six months post-treatment, despite a 

significant decrease in arterial pressure (54). In contrast to these results, a clinical report from 

Zaldivia and colleagues (55) described a reduction in circulating inflammatory cytokines 

(MCP-1, IL-1β, TNF-α, and IL-12) several months after catheter-based RDN in hypertensive 
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subjects. Further clinical and preclinical investigations are necessary to elucidate the anti-

inflammatory effect of RDN. 

 

Drug Interactions 

The recent three sham-controlled trials SPYRAL HTN-OFF MED and RADIANCE 

SOLO in which patients were not on concurrent medication, and SPYRAL HTN-ON MED in 

which 29% of individuals were using one drug, 18% were taking two pills, and 53% were  

using 3 types of antihypertensive medications (distributed as follows: ~60% thiazide diuretic, 

~75% calcium channel blockers, ~85% ACE-I/ARB, and only ~15% were taking beta-

blockers; no patient was prescribed clonidine or spironolactone) presented a significant 

baseline-adjusted fall in ambulatory BP, even though background treatment and baseline BP 

levels differed between them: SPYRAL HTN-ON MED: 24-hour systolic BP (SBP), − 7.0 mm 

Hg (95% confidence interval [CI], − 12.0 to − 2.1; P =0.0059), 24-hour diastolic BP, − 4.3 mm 

Hg (95% CI, – 7.8 to – 0.8; P =0.0174); RADIANCE-HTN SOLO: 24-hour SBP, – 7.0 ± 8.6 

mm Hg; P =0.006, 24-hour diastolic BP, – 4.4 ± 5.8 mm Hg; P =0.07; and SPYRAL HTN-OFF 

MED: 24-hour SBP, – 5.3 mm Hg (95% CI, − 8.6 to – 2.0; P =0.0020), 24-hour diastolic BP, 

– 4.8 mm Hg (95% CI, – 6.8 to – 2.8; P =0.001. Moreover, the effect in drug naïve patients 

seems similar when comparing SPYRAL HTN-OFF MED with RADIANCE-HTN SOLO. 

Further studies are needed to elucidate if spironolactone and or clonidine cause any drug 

interaction with RDN or if their response can predict responders to RDN. 

 

Potential Impact on CV outcomes 

Reduction in target organ damage by a treatment intervention is closely linked to a 

decrease in time-averaged BP it causes. In a  meta-analysis including 613,815 patients from 
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122 studies, reduction of office BP by 10mmHg was related to the reduction of cardiovascular 

events by 20%, overall mortality by 13%, coronary artery disease by 17%, strokes by 27% and 

heart failure by 28%, respectively (56). In the HOPE-3 study, patients with baseline office BP 

more than 143.5mmHg had a reduction of BP by -5.8/-3.0mmHg (due to pharmacologic 

therapy) associated with a 28% lower incidence of cardiovascular events compared with the 

placebo group (57). 

 Even though not proven by a prospective outcome trial we predict  that a 10mmHg 

decrease in office BP achieved in RDN trials, if maintained long-term, would be associated 

with a reduction in cardiovascular events by ~25%, especially heart failure and stroke. 

 

Summary 

 The positive results from SPYRAL HTN-OFF MED, RADIANCE SOLO, and 

SPYRAL HTN-ON MED signify a new beginning for the RDN field. However, several 

unsolved issues remain, including identification of those patients who may benefit most, 

defining the durability of effects on BP and safety in the long-term, determining the 

mechanisms underpining the RDN evoked fall in BP in order to optimise response, and 

developing tests/technologies to establish the extent of renal artery denervation at the time of 

intervention as well more complete ablation. 

 Filling in these blanks  will help to advance the field further, design approaches to 

amplify the BP lowering response and ultimately determine the clinical utility of RDN. Here, 

we have summarized some of the most relevant issues identified by a group of clinical and 

experimental scientist to facilitate this critical task.  
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Figure 1. Comparison 24-h systolic and diastolic blood pressure (SBP and DBP) changes in 

renal denervation vs. sham-control groups in the 3 recent randomized, sham-controlled clinical 

trials. ABPM indicates ambulatory BP monitoring; CI, confi dence interval; HTN-ON MED, 

Spyral Hypertension on Medication trial; HTN-OFF MED, Spyral Hypertension OFF 

Medication trial; and RADIANCE-HTN SOLO, RADIANCE hypertension solo (off 

medication) trial. Reprinted from Kandzari et al, 1 Azizi et al, 2 and Townsend et al 3 with 

permission. 
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Figure 2. There are multiple pathways to connect renal sympathetic nerves with the stellate 

ganglion. Both preganglionic and postganglionic sympathetic fibers may innervate the renal 

artery, according to the representation of possible connections among different nerve 

structures.   
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Figure 3. The promising three modalities of procedural monitoring (direct neural stimulation, 

reflex elicitation, and passive monitoring) evaluated by new technologies, providing intra-

procedural validation of renal denervation. 
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Figure 4. The top picture shows the right renal artery sympathetic innervation in (A) anterior 

and (B) posterior views divided in three segments: proximal (green square), middle (green 

lozenge), and distal (green triangle) . The bottom illustration depicts a schematic concept for 

selective vs. global renal denervation: red dots represent “hot spots” - pressor spots. These are 

nerves that when stimulated increase blood pressure. They are the ideal target of renal 

denervation. Blue dots represent “cold spots” - inhibitory spots, which lower blood pressure 

when stimulated. The yellow dots represent the majority of nerve fibers, which are neutral in 

their contribution for blood pressure physiology and do not show hemodynamic effects when 

stimulated. Ag (adrenal gland), Arg (aorticorenal ganglion), Coe (coeliac ganglion), CoT 

(coeliac trunk), Ig (renal inferior ganglion), LC (contribution of the lumbar chain to the renal 

plexus), Pg (renal posterior ganglion), RK (right kidney), SMg (superior mesenteric ganglion), 

SP (Thoracic splanchnic nerves), * (connection between ganglia). Adapted from (58)Mompeo 

et al. Clinical Anatomy 2016; 29:660–664, (59) Sakakura et al. Journal of the American 

College of Cardiology 2014; 64:635–43, and (33) Fudim et al. Current Hypertension Reports 

2018; 20:37. 
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Figure 5. Effects of electrical stimulation (5 Hz, 10 V, from 0 to 30 s) of the whole renal nerve 

on mean arterial pressure (MAP), heart rate (HR), renal vascular conductance (RVC) and renal 

blood flow (RBF) in normotensive anaesthetized sheep. Left panel shows results for control 

non-denervated sheep (black, n = 6) and acutely denervated sheep (green, n = 6). Right panel 

shows results for control non-denervated sheep (black, n = 6), 5.5 months postdenervation (red, 

n = 6) and 11 months postdenervation (blue, n = 5). Data are 5 s averages ± SEM (43).  


