108 research outputs found

    The Prehistory of the Infield Fly Rule

    Get PDF

    Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia

    Get PDF
    DDX41 mutations are the most common germline alterations in adult myelodysplastic syndromes (MDSs). The majority of affected individuals harbor germline monoallelic frameshift DDX41 mutations and subsequently acquire somatic mutations in their other DDX41 allele, typically missense R525H. Hematopoietic progenitor cells (HPCs) with biallelic frameshift and R525H mutations undergo cell cycle arrest and apoptosis, causing bone marrow failure in mice. Mechanistically, DDX41 is essential for small nucleolar RNA (snoRNA) processing, ribosome assembly, and protein synthesis. Although monoallelic DDX41 mutations do not affect hematopoiesis in young mice, a subset of aged mice develops features of MDS. Biallelic mutations in DDX41 are observed at a low frequency in non-dominant hematopoietic stem cell clones in bone marrow (BM) from individuals with MDS. Mice chimeric for monoallelic DDX41 mutant BM cells and a minor population of biallelic mutant BM cells develop hematopoietic defects at a younger age, suggesting that biallelic DDX41 mutant cells are disease modifying in the context of monoallelic DDX41 mutant BM

    Next-Generation Sequencing in Post-mortem Genetic Testing of Young Sudden Cardiac Death Cases.

    Get PDF
    Sudden cardiac death (SCD) in the young (<40 years) occurs in the setting of a variety of rare inherited cardiac disorders and is a disastrous event for family members. Establishing the cause of SCD is important as it permits the pre-symptomatic identification of relatives at risk of SCD. Sudden arrhythmic death syndrome (SADS) is defined as SCD in the setting of negative autopsy findings and toxicological analysis. In such cases, reaching a diagnosis is even more challenging and post-mortem genetic testing can crucially contribute to the identification of the underlying cause of death. In this review, we will discuss the current achievements of "the molecular autopsy" in young SADS cases and provide an overview of key challenges in assessing pathogenicity (i.e., causality) of genetic variants identified through next-generation sequencing

    Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice

    Get PDF
    Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans

    Dilated cardiomyopathy myosin mutants have reduced force-generating capacity

    Get PDF
    Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human ?-cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding A·M.D complex in the steady-state. Under load, the A·M·D state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force holding capacity due to the reduced occupancy of the force-holding state

    How Can We Improve Oncofertility Care for Patients? A Systematic Scoping Review of Current International Practice and Models of Care

    Get PDF
    © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. BACKGROUND: Fertility preservation (FP) is an important quality of life issue for cancer survivors of reproductive age. Despite the existence of broad international guidelines, the delivery of oncofertility care, particularly amongst paediatric, adolescent and young adult patients, remains a challenge for healthcare professionals (HCPs). The quality of oncofertility care is variable and the uptake and utilization of FP remains low. Available guidelines fall short in providing adequate detail on how oncofertility models of care (MOC) allow for the real-world application of guidelines by HCPs. OBJECTIVE AND RATIONALE: The aim of this study was to systematically review the literature on the components of oncofertility care as defined by patient and clinician representatives, and identify the barriers, facilitators and challenges, so as to improve the implementation of oncofertility services. SEARCH METHODS: A systematic scoping review was conducted on oncofertility MOC literature published in English between 2007 and 2016, relating to 10 domains of care identified through consumer research: communication, oncofertility decision aids, age-appropriate care, referral pathways, documentation, training, supportive care during treatment, reproductive care after cancer treatment, psychosocial support and ethical practice of oncofertility care. A wide range of electronic databases (CINAHL, Embase, PsycINFO, PubMed, AEIPT, Education Research Complete, ProQuest and VOCED) were searched in order to synthesize the evidence around delivery of oncofertility care. Related citations and reference lists were searched. The review was undertaken following registration (International prospective register of systematic reviews (PROSPERO) registration number CRD42017055837) and guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). OUTCOMES: A total of 846 potentially relevant studies were identified after the removal of duplicates. All titles and abstracts were screened by a single reviewer and the final 147 papers were screened by two reviewers. Ten papers on established MOC were identified amongst the included papers. Data were extracted from each paper and quality scores were then summarized in the oncofertility MOC summary matrix. The results identified a number of themes for improving MOC in each domain, which included: the importance of patients receiving communication that is of a higher quality and in different formats on their fertility risk and FP options; improving provision of oncofertility care in a timely manner; improving access to age-appropriate care; defining the role and scope of practice of all HCPs; and improving communication between different HCPs. Different forms of decision aids were found useful for assisting patients to understand FP options and weigh up choices. WIDER IMPLICATIONS: This analysis identifies core components for delivery of oncofertility MOC. The provision of oncofertility services requires planning to ensure services have safe and reliable referral pathways and that they are age-appropriate and include medical and psychological oncofertility care into the survivorship period. In order for this to happen, collaboration needs to occur between clinicians, allied HCPs and executives within paediatric and adult hospitals, as well as fertility clinics across both public and private services. Training of both cancer and non-cancer HCPs is needed to improve the knowledge of HCPs, the quality of care provided and the confidence of HCPs with these consultations

    Heavy and light roles: myosin in the morphogenesis of the heart

    Get PDF
    Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin lightchain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congenital heart defects. This review will discuss the roles of myosin, specifically with regards to the developing heart. The expression of each myosin protein will be described, and the effects that altering expression has on the heart in embryogenesis in different animal models will be discussed. The human molecular genetics of the myosins will also be reviewed

    Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel

    Get PDF
    Purpose Integrating genomic sequencing in clinical care requires standardization of variant interpretation practices. The Clinical Genome Resource has established expert panels to adapt the American College of Medical Genetics and Genomics/Association for Molecular Pathology classification framework for specific genes and diseases. The Cardiomyopathy Expert Panel selected MYH7, a key contributor to inherited cardiomyopathies, as a pilot gene to develop a broadly applicable approach. Methods: Expert revisions were tested with 60 variants using a structured double review by pairs of clinical and diagnostic laboratory experts. Final consensus rules were established via iterative discussions. Results: Adjustments represented disease-/gene-informed specifications (12) or strength adjustments of existing rules (5). Nine rules were deemed not applicable. Key specifications included quantitative frameworks for minor allele frequency thresholds, the use of segregation data, and a semiquantitative approach to counting multiple independent variant occurrences where fully controlled case-control studies are lacking. Initial inter-expert classification concordance was 93%. Internal data from participating diagnostic laboratories changed the classification of 20% of the variants (n = 12), highlighting the critical importance of data sharing. Conclusion: These adapted rules provide increased specificity for use in MYH7-associated disorders in combination with expert review and clinical judgment and serve as a stepping stone for genes and disorders with similar genetic and clinical characteristics
    • …
    corecore