2 research outputs found

    Shape completion with a 3D Convolutional Neural Network for multi-domain O&M activities in offshore wind farms.

    Get PDF
    An autonomous vehicle needs to understand its surrounding environment to plan routes and avoid collisions. For that purpose, they are equipped with appropriate sensors which allow them to capture the necessary information. The maritime environment presents additional which make it hard to have a clear picture of the nearby structures. In this work, the goal is to use the available sensor information to infer the complete shape of nearby structures. The approach is divided into three main components: clustering, classification, and registration. The clustering is used to detect sizeable structures and remove irrelevant ones. The resulting data is voxelized, and classified, by a 3D CNN, as one of the studied structures. Finally, a hybrid PSO-ICP registration method is used to fit a complete CAD model on the observed data

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore