13 research outputs found

    The presence of peat and variation in tree species composition are under different hydrological controls in Amazonian wetland forests

    Get PDF
    This research was funded by the Gordon and Betty Moore Foundation, through grant #5349 ‘Monitoring protected areas in Peru to increase forest resilience to climate change’, and NERC standard grant ‘Carbon Storage in Amazonian Peatlands: Distribution and Dynamics’(NE/R000751/1).The peat-forming wetland forests of Amazonia are characterised by high below-carbon stocks and supply fruit, fibres and timber to local communities. Predicting the future of these ecosystem services requires understanding how hydrological conditions are related to tree species composition and the presence, or absence, of peat. Here, we use continuous measurements of water table depth over 2.5 years and manual measurements of pore-water pH and electrical conductivity to understand the ecohydrological controls of these variables across the large peatland complex in northern Peruvian Amazonia. Measurements were taken in permanent forest plots in four palm swamps, four seasonally flooded forests and four peatland pole forests. All trees ≥10 cm diameter were also measured and identified in the plots to assess floristic composition. Peat occurs in eight of these twelve sites; three seasonally flooded forests and one palm swamp are not associated with peat. Variation in tree species composition among forest types was linked to high flood levels (maximum flooding height) and pH: seasonally flooded forests experience high flood levels (up to 3.66 m from the ground surface) and have high pH values (6?7), palm swamps have intermediate flood levels (up to 1.34 m) and peatland pole forests experience shallow flooding (up to 0.28 m) and have low pH (4). In contrast, the presence of peat was linked to variation in maximum water table depth (ie the depth to which the water table drops below the ground surface). Surface peat is found in all forest types where maximum water table depth does not fall >0.55 m below the ground surface at any time. Peat formation and variation in tree species composition therefore have different ecohydrological controls. Predicted increases in the frequency and strength of flooding events may alter patterns of tree species composition, whereas increases in drought severity and declines in minimum river levels may pose a greater risk to the belowground carbon stores of these peatland ecosystems.Publisher PDFPeer reviewe

    Understanding different dominance patterns in western Amazonian forests

    Get PDF
    Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.Publisher PDFPeer reviewe

    Taking the pulse of Earth's tropical forests using networks of highly distributed plots

    Get PDF
    Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests. Resumen Los bosques tropicales son los ecosistemas más diversos y productivos del mundo y entender su funcionamiento es crítico para nuestro futuro colectivo. Sin embargo, hasta hace muy poco, los esfuerzos para medirlos y monitorearlos han estado muy desconectados. El trabajo en redes es esencial para descubrir las respuestas a preguntas que trascienden las fronteras y los plazos de las agencias de financiamiento. Aquí mostramos cómo una comunidad global está respondiendo a los desafíos de la investigación en ecosistemas tropicales a través de diversos equipos realizando mediciones árbol por árbol en miles de parcelas permanentes de largo plazo. Revisamos los descubrimientos más importantes de este trabajo y discutimos cómo este proceso está cambiando la ciencia relacionada a los bosques tropicales. El enfoque central de nuestro esfuerzo implica la conexión de iniciativas locales de largo plazo con protocolos estandarizados y manejo de datos para producir resultados que se puedan trasladar a múltiples escalas. Conectando investigadores tropicales, elevando su posición y estatus, nuestro modelo de Red Social de Investigación reconoce el rol fundamental que tienen, para el descubrimiento científico, quienes generan o producen los datos. Concebida en 1999 con RAINFOR (Suramérica), nuestras redes de parcelas permanentes han sido adaptadas en África (AfriTRON) y el sureste asiático (T-FORCES) y ampliamente replicadas en el mundo. Actualmente todas estas iniciativas están integradas a través de la ciber-infraestructura de ForestPlots.net, conectando colegas de 54 países en 24 redes diferentes de parcelas. Colectivamente, estas redes están transformando nuestro conocimiento sobre los bosques tropicales y el rol de éstos en la biósfera. Juntos hemos descubierto cómo, dónde y porqué el carbono y la biodiversidad de los bosques tropicales está respondiendo al cambio climático y cómo se retroalimentan. Esta colaboración pan-tropical de largo plazo ha expuesto un gran sumidero de carbono y sus tendencias, mostrando claramente cuáles son los factores más importantes, qué procesos se ven afectados, dónde ocurren los cambios, los tiempos de reacción y las probables respuestas futuras mientras el clima continúa cambiando. Apalancando lo que realmente es una tecnología antigua, las redes de parcelas están generando una verdadera y moderna revolución en la ciencia tropical. En el futuro, la humanidad puede beneficiarse enormemente si se nutren y cultivan comunidades de investigadores de base, actualmente con la capacidad de generar información única y de largo plazo para entender los que probablemente son los bosques más preciados de la tierra. Resumo Florestas tropicais são os ecossistemas mais diversos e produtivos da Terra. Embora uma boa compreensão destas florestas seja crucial para o nosso futuro coletivo, até muito recentemente os esforços de medições e monitoramento foram amplamente desconexos. É essencial formarmos redes para obtermos respostas que transcendem fronteiras e horizontes de agências financiadoras. Neste estudo nós mostramos como uma comunidade global está respondendo aos desafios da pesquisa de ecossistemas tropicais, com equipes diversas medindo florestas, árvore por árvore, em milhares de parcelas monitoradas à longo prazo. Nós revisamos as maiores descobertas científicas deste trabalho, e mostramos também como este processo está mudando a ciência de florestas tropicais. Nossa abordagem principal envolve unir iniciativas de base a protocolos padronizados e gerenciamento de dados a fim de gerar resultados robustos em escalas ampliadas. Ao conectar pesquisadores tropicais e elevar seus status, nosso modelo de Rede de Pesquisa Social reconhece o papel-chave do produtor dos dados na descoberta científica. Concebida em 1999 com o RAINFOR (América do Sul), nossa rede de parcelas permanentes foi adaptada para África (AfriTRON) e Sudeste asiático (T-FORCES), e tem sido extensamente reproduzida em todo o mundo. Agora estas múltiplas iniciativas estão integradas através de uma infraestrutura cibernética do ForestPlots.net, conectando colegas de 54 países de 24 redes de parcelas. Estas iniciativas estão transformando coletivamente o entendimento das florestas tropicais e seus papéis na biosfera. Juntos nós descobrimos como, onde e por que o carbono e a biodiversidade da floresta estão respondendo às mudanças climáticas, e seus efeitos de retroalimentação. Esta duradoura colaboração pantropical revelou um grande sumidouro de carbono persistente e suas tendências, assim como tem evidenciado quais direcionadores são mais importantes, quais processos florestais são mais afetados, onde eles estão mudando, seus atrasos no tempo de resposta, e as prováveis respostas das florestas tropicais conforme o clima continua a mudar. Dessa forma, aproveitando uma notável tecnologia antiga, redes de parcelas acendem faíscas de uma moderna revolução na ciência das florestas tropicais. No futuro a humanidade pode se beneficiar incentivando estas comunidades basais que agora são coletivamente capazes de gerar conhecimentos únicos e duradouros sobre as florestas mais preciosas da Terra. Résume Les forêts tropicales sont les écosystèmes les plus diversifiés et les plus productifs de la planète. Si une meilleure compréhension de ces forêts est essentielle pour notre avenir collectif, jusqu'à tout récemment, les efforts déployés pour les mesurer et les surveiller ont été largement déconnectés. La mise en réseau est essentielle pour découvrir les réponses à des questions qui dépassent les frontières et les horizons des organismes de financement. Nous montrons ici comment une communauté mondiale relève les défis de la recherche sur les écosystèmes tropicaux avec diverses équipes qui mesurent les forêts arbre après arbre dans de milliers de parcelles permanentes. Nous passons en revue les principales découvertes scientifiques de ces travaux et montrons comment ce processus modifie la science des forêts tropicales. Notre approche principale consiste à relier les initiatives de base à long terme à des protocoles standardisés et une gestion de données afin de générer des résultats solides à grande échelle. En reliant les chercheurs tropicaux et en élevant leur statut, notre modèle de réseau de recherche sociale reconnaît le rôle clé de l'auteur des données dans la découverte scientifique. Conçus en 1999 avec RAINFOR (Amérique du Sud), nos réseaux de parcelles permanentes ont été adaptés à l'Afrique (AfriTRON) et à l'Asie du Sud-Est (T-FORCES) et largement imités dans le monde entier. Ces multiples initiatives sont désormais intégrées via l'infrastructure ForestPlots.net, qui relie des collègues de 54 pays à travers 24 réseaux de parcelles. Ensemble, elles transforment la compréhension des forêts tropicales et de leur rôle biosphérique. Ensemble, nous avons découvert comment, où et pourquoi le carbone forestier et la biodiversité réagissent au changement climatique, et comment ils y réagissent. Cette collaboration pan-tropicale à long terme a révélé un important puits de carbone à long terme et ses tendances, tout en mettant en évidence les facteurs les plus importants, les processus forestiers qui sont affectés, les endroits où ils changent, les décalages et les réactions futures probables des forêts tropicales à mesure que le climat continue de changer. En tirant parti d'une technologie remarquablement ancienne, les réseaux de parcelles déclenchent une révolution très moderne dans la science des forêts tropicales. À l'avenir, l'humanité pourra grandement bénéficier du soutien des communautés de base qui sont maintenant collectivement capables de générer une compréhension unique et à long terme des forêts les plus précieuses de la Terre. Abstrak Hutan tropika adalah di antara ekosistem yang paling produktif dan mempunyai kepelbagaian biodiversiti yang tinggi di seluruh dunia. Walaupun pemahaman mengenai hutan tropika amat penting untuk masa depan kita, usaha-usaha untuk mengkaji dan mengawas hutah-hutan tersebut baru sekarang menjadi lebih diperhubungkan. Perangkaian adalah sangat penting untuk mencari jawapan kepada soalan-soalan yang menjangkaui sempadan dan batasan agensi pendanaan. Di sini kami menunjukkan bagaimana sebuah komuniti global bertindak balas terhadap cabaran penyelidikan ekosistem tropika melalui penglibatan pelbagai kumpulan yang mengukur hutan secara pokok demi pokok dalam beribu-ribu plot jangka panjang. Kami meninjau semula penemuan saintifik utama daripada kerja ini dan menunjukkan bagaimana proses ini sedang mengubah bidang sains hutan tropika. Teras pendekatan kami memberi tumpuan terhadap penghubungan inisiatif akar umbi jangka panjang dengan protokol standar serta pengurusan data untuk mendapatkan hasil skala besar yang kukuh. Dengan menghubungkan penyelidik-penyelidik tropika dan meningkatkan status mereka, model Rangkaian Penyelidikan Sosial kami mengiktiraf kepentingan peranan pengasas data dalam penemuan saintifik. Bermula dengan pengasasan RAINFOR (Amerika Selatan) pada tahun 1999, rangkaian-rangkaian plot kekal kami kemudian disesuaikan untuk Afrika (AfriTRON) dan Asia Tenggara (T-FORCES) dan selanjutnya telah banyak dicontohi di seluruh dunia. Kini, inisiatif-inisiatif tersebut disepadukan melalui infrastruktur siber ForestPlots.net yang menghubungkan rakan sekerja dari 54 negara di 24 buah rangkaian plot. Secara kolektif, rangkaian ini sedang mengubah pemahaman tentang hutan tropika dan peranannya dalam biosfera. Kami telah bekerjasama untuk menemukan bagaimana, di mana dan mengapa karbon serta biodiversiti hutan bertindak balas terhadap perubahan iklim dan juga bagaimana mereka saling bermaklum balas. Kolaborasi pan-tropika jangka panjang ini telah mendedahkan sebuah sinki karbon jangka panjang serta arah alirannya dan juga menjelaskan pemandu-pemandu perubahan yang terpenting, di mana dan bagaimana proses hutan terjejas, masa susul yang ada dan kemungkinan tindakbalas hutan tropika pada perubahan iklim secara berterusan di masa depan. Dengan memanfaatkan pendekatan lama, rangkaian plot sedang menyalakan revolusi yang amat moden dalam sains hutan tropika. Pada masa akan datang, manusia sejagat akan banyak mendapat manfaat jika memupuk komuniti-komuniti akar umbi yang kini berkemampuan secara kolektif menghasilkan pemahaman unik dan jangka panjang mengenai hutan-hutan yang paling berharga di dunia

    Risks to carbon storage from land-use change revealed by peat thickness maps of Peru

    No full text
    Las turberas tropicales son uno de los ecosistemas más densos en carbono, pero el cambio de uso del suelo ha provocado la pérdida de grandes áreas de turberas, lo que se asocia a importantes emisiones de gases de efecto invernadero. Para diseñar políticas eficaces de conservación y restauración, es vital disponer de mapas de la ubicación y el almacenamiento de carbono de las turberas tropicales. Esto es especialmente cierto en países como Perú, donde la distribución de sus grandes turberas hidrológicamente intactas es poco conocida. En este caso, los datos de campo y de teledetección apoyan el desarrollo de un modelo de extensión y grosor de las turberas para la Amazonia peruana de tierras bajas. Estimamos una superficie de turberas de 62.714 km2 (intervalos de confianza 5º y 95º de 58.325 y 67.102 km2, respectivamente) y una reserva de carbono de 5,4 (2,6-10,6) PgC, un valor que se aproxima a la totalidad de la reserva de carbono sobre el suelo de Perú, pero que está contenida en sólo el 5% de su superficie. Al combinar el mapa de la extensión de las turberas con los datos nacionales sobre la cobertura del suelo, revelamos pequeñas pero crecientes áreas de deforestación y las emisiones de CO2 asociadas a la descomposición de la turba debido a la conversión a la minería, las zonas urbanas y la agricultura. Las emisiones de las zonas de turberas clasificadas como bosques en el año 2000 representan entre el 1 y el 4% de las emisiones forestales de CO2 del Perú entre 2000 y 2016. Sugerimos que se requiere un seguimiento a medida, protección y gestión sostenible de las turberas tropicales para evitar una mayor degradación y emisiones de CO2.Revisión por pares

    Plant species richness, not hygrothermal stress, is the main predictor of gall-inducing insect richness in Peruvian Amazon forests

    No full text
    Patterns of gall-inducing insect diversity tend to be influenced by both habitat-related and plant-related characteristics. We investigated the distribution patterns of galling insects in four vegetation types (terra firme forest, white-sand dry forest, white-sand wet forest and palm swamp forest) of the Peruvian Amazon to test if the insect gall diversity (1) differs among different types of vegetation and (2) depends on host plant richness. In total, we found 11,579 galls belonging to 249 insect gall morphotypes, distributed across 30 botanical families and 75 plant species. Among host plant families, Fabaceae showed the greatest richness of insect gall morphotypes. We found that galling species richness was lower in palm swamp forest than in white-sand forests, which can be explained by the lower richness of plants in this type of vegetation. However, we found no evidence of greater richness in xeric habitats (e.g., white-sand dry forest) than in more mesic vegetation (terra firme forest), contradicting the hypothesis of hygrothermal stress. We also found that plant species richness was positively influenced with the richness and abundance of galling species, regardless of vegetation type. Galling insect species composition differed significantly between vegetation types, similarly to the floristic composition. Our findings show that the diversity of galling insects in the tropical rainforests of Peruvian Amazon are mainly influenced by host plant composition and host plant richness

    The seasonal cycle of productivity, metabolism and carbon dynamics in a wet aseasonal forest in north-west Amazonia (Iquitos, Peru)

    No full text
    Background: The forests of north-west Amazonia are characterised by the highest levels of tree diversity in the world, high rainfall and relatively fertile soils. Aims: Here we present a comprehensive description of the carbon cycle of two 1 ha forests plots in Allpahuayo, near Iquitos, Peru, one on an occasionally inundated alisol/gleysol landscape, the other on an arenosol (sandy soil). Methods: Data on the components of net primary productivity (NPP) and autotrophic respiration were collected over the period 2009-2011, and summed to estimate gross primary productivity (GPP) and carbon use efficiency (CUE). Results: Overall, these forests showed high values of GPP (39.05 ± 4.59 and 41.88 ± 4.60 Mg C ha-1 year-1). Despite the lack of a dry season, the forests showed distinct seasonality in tree growth, litterfall, flowering and fine root productivity. This showed that tropical forests with little seasonality in water supply can still exhibit distinct seasonality in NPP and carbon use, apparently synchronised to the solar radiation cycle. We found remarkably little difference in productivity between the alisol/gleysol plot and the arenosol plot. Conclusions: The GPP was higher than those reported for forests in Brazilian Amazonia on more infertile soils. The CUE was also higher, which may be related to the high forest dynamism and natural disturbance rate. These two factors combined to result in amongst the highest NPP values reported for Amazonia. © 2014 Copyright 2013 Botanical Society of Scotland and Taylor & Francis

    STRESS-STRAIN RELATIONSHIP OF SOILS UNDER THREE DIFFERENT PRINCIPAL STRESSES

    No full text
    相異なる3主応力下の土の一般的な応力~ひずみ関係式を, 微視的観点からも妥当な土の根源的なパラメーターによって規定することは, 現在の土質力学の最重要課題の1つであると考えられる。ここでは, せん断時の土粒子の挙動についての微視的な解析から得たモービライズ面((τ/σn)max の面)上の応力~ひずみ間の基本関係式1》にもとづき, 複合モービライズ面の概念を新たに導入して, 相異なる3主応力下の土の一般的な応力~ひずみ関係式を誘導する。ついで, この応力~ひずみ関係式を三軸圧縮試験(最大主応力σ1≧中間主応力σ2=最小主応力σ3), 三軸伸張試験(σ1=σ2≧σ3), 平面ひずみ試験(中間主ひずみε2=0)および多軸試験(σ1≧σ2≧σ3, ε2≠0)の実測データによって検証し, その一般性を検討する。また非誘水せん断試験に適用する方法を述べ, その結果を実測データと比較する。さらに, この提案式によれば, 上記の試験法, 試料の間げき比, 拘束応力の大小にかかわらず, また砂であっても粘土であっても, 全て同一原理にもとづいて説明できることを示す。最後に, これらの応力~ひずみ関係式中の係数(λ, μ, μ', γ0)の物理的意味およびその決定法について述べる。Based on the basic relations between stress and strain on the mobilized ((τ/σN)max-) planewhich are obtained from a microscopic analysis of shear resistance and dilatancy, a general stress-strain relationship of soils under three different principal stresses is derived by introducing a newconcept of three mobilized planes. These stress-strain relationships are verified on the basis ofmeasured data obtained by the conventional triaxial compression test (σ1≧σ2=σ3), conventionaltriaxial extension test (σ1=σ2≧σ3), plane strain test (ε =0) and universal triaxial test (σ1≧σ2≧σ3, ε2≠0).相異なる3主応力下の土の一般的な応力~ひずみ関係式を,微視的観点からも妥当な土の根源的なパラメーターによって規定することは,現在の土質力学の最重要課題の1つであると考えられる。ここでは,せん断時の土粒子の挙動についての微視的な解析から得たモービライズ面((τ/σn)max の面)上の応力~ひずみ間の基本関係式1》にもとづき,複合モービライズ面の概念を新たに導入して,相異なる3主応力下の土の一般的な応力~ひずみ関係式を誘導する。ついで,この応力~ひずみ関係式を三軸圧縮試験(最大主応力σ1≧中間主応力σ2=最小主応力σ3),三軸伸張試験(σ1=σ2≧σ3),平面ひずみ試験(中間主ひずみε2=0)および多軸試験(σ1≧σ2≧σ3,ε2≠0)の実測データによって検証し,その一般性を検討する。また非誘水せん断試験に適用する方法を述べ,その結果を実測データと比較する。さらに,この提案式によれば,上記の試験法,試料の間げき比,拘束応力の大小にかかわらず,また砂であっても粘土であっても,全て同一原理にもとづいて説明できることを示す。最後に,これらの応力~ひずみ関係式中の係数(λ,μ,μ',γ0)の物理的意味およびその決定法について述べる。Based on the basic relations between stress and strain on the mobilized ((τ/σN)max-) planewhich are obtained from a microscopic analysis of shear resistance and dilatancy, a general stress-strain relationship of soils under three different principal stresses is derived by introducing a newconcept of three mobilized planes. These stress-strain relationships are verified on the basis ofmeasured data obtained by the conventional triaxial compression test (σ1≧σ2=σ3), conventionaltriaxial extension test (σ1=σ2≧σ3), plane strain test (ε =0) and universal triaxial test (σ1≧σ2≧σ3,ε2≠0)

    Understanding different dominance patterns in western Amazonian forests

    No full text
    Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥ 2.5 cm diameter, 2,609 species) to explore the relationships between local abundance, regional frequency, and spatial aggregation of dominant species in four main habitat types in western Amazonia. Contrary to the widely supported positive abundance-occupancy relationship in ecology, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unraveling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests

    Understanding different dominance patterns in western Amazonian forests (all versions - software)

    No full text
    Dominance of neotropical tree communities by a few species is widely documented, yet the different pathways that Amazonian plants follow to achieve dominance remain poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥ 2.5 cm diameter, 2,609 species) to explore the relationships between local abundance, regional frequency, and spatial aggregation of dominant species across habitats in western Amazonia. Contrary to the well-supported abundance-occupancy relationship, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency/spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can allocate resources to being locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unraveling different modes of dominance is a research priority to direct conservation efforts in Amazonian forests
    corecore