239 research outputs found

    Human teaching and cumulative cultural evolution

    Get PDF
    This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 648841 RATCHETCOG ERC-2014-CoG.Although evidence of teaching behaviour has been identified in some nonhuman species, human teaching appears to be unique in terms of both the breadth of contexts within which it is observed, and in its responsiveness to needs of the learner. Similarly, cultural evolution is observable in other species, but human cultural evolution appears strikingly distinct. This has led to speculation that the evolutionary origins of these capacities may be causally linked. Here we provide an overview of contrasting perspectives on the relationship between teaching and cultural evolution in humans, and briefly review previous research which suggests that cumulative culture (here meaning cultural evolution featuring a trend towards improving functionality) can occur without teaching. We then report the results of a novel experimental study in which we investigated how the benefits of teaching may depend on the complexity of the skill to be acquired. Participants were asked to tie knots of varying complexity. In our Teaching condition, opportunities to interact with an experienced partner aided transmission of the most complex knots, but not simpler equivalents, relative to exposure to completed products alone (End State Only condition), and also relative to information about the process of completion (Intermediate States condition). We conclude by considering the plausibility of various accounts of the evolutionary relationship between teaching and cultural evolution in humans.Publisher PDFPeer reviewe

    Specialization in the vicarious learning of novel arbitrary sequences in humans but not orangutans

    Get PDF
    Sequence learning underlies many uniquely human behaviours, from complex tool use to language and ritual. To understand whether this fundamental cognitive feature is uniquely derived in humans requires a comparative approach. We propose that the vicarious (but not individual) learning of novel arbitrary sequences represents a human cognitive specialization. To test this hypothesis, we compared the abilities of human children aged 3–5 years and orangutans to learn different types of arbitrary sequences (item-based and spatial-based). Sequences could be learned individually (by trial and error) or vicariously from a human (social) demonstrator or a computer (ghost control). We found that both children and orangutans recalled both types of sequence following trial-and-error learning; older children also learned both types of sequence following social and ghost demonstrations. Orangutans' success individually learning arbitrary sequences shows that their failure to do so in some vicarious learning conditions is not owing to general representational problems. These results provide new insights into some of the most persistent discontinuities observed between humans and other great apes in terms of complex tool use, language and ritual, all of which involve the cultural learning of novel arbitrary sequences

    Experimental approaches to studying cumulative cultural evolution

    Get PDF
    In humans, cultural traditions often change in ways which increase efficiency and functionality. This process, widely referred to as cumulative cultural evolution, sees beneficial traits preferentially retained, and it is so pervasive that we may be inclined to take it for granted. However, directional change of this kind appears to distinguish human cultural traditions from behavioural traditions that have been documented in other animals. Cumulative culture is therefore attracting an increasing amount of attention within psychology, and researchers have begun to develop methods of studying this phenomenon under controlled conditions. These studies have now addressed a number of different questions, including which learning mechanisms may be implicated, and how the resulting behaviours may be influenced by factors such as population structure. The current article provides a synopsis of some of these studies, and highlights some of the unresolved issues in this field

    Human teaching and cumulative cultural evolution

    Get PDF
    Although evidence of teaching behaviour has been identified in some nonhuman species, human teaching appears to be unique in terms of both the breadth of contexts within which it is observed, and in its responsiveness to needs of the learner. Similarly, cultural evolution is observable in other species, but human cultural evolution appears strikingly distinct. This has led to speculation that the evolutionary origins of these capacities may be causally linked. Here we provide an overview of contrasting perspectives on the relationship between teaching and cultural evolution in humans, and briefly review previous research which suggests that cumulative culture (here meaning cultural evolution featuring a trend towards improving functionality) can occur without teaching. We then report the results of a novel experimental study in which we investigated how the benefits of teaching may depend on the complexity of the skill to be acquired. Participants were asked to tie knots of varying complexity. In our Teaching condition, opportunities to interact with an experienced partner aided transmission of the most complex knots, but not simpler equivalents, relative to exposure to completed products alone (End State Only condition), and also relative to information about the process of completion (Intermediate States condition). We conclude by considering the plausibility of various accounts of the evolutionary relationship between teaching and cultural evolution in humans

    Pelagic ecosystem dynamics between late autumn and the post spring bloom in a sub-Arctic fjord

    Get PDF
    Marine ecosystems, and particularly fjords, are experiencing an increasing level of human activity on a yearround basis, including the poorly studied winter period. To improve the knowledge base for environmentally sustainable management in all seasons, this study provides hydrographic and biological baseline data for the sub-Arctic fjord Kaldfjorden, Northern Norway (69.7 N, 18.7 E), between autumn 2017 and spring 2018. Field observations are integrated with results of a numerical ocean model simulation, illustrating how pelagic biomass, represented by chlorophyll a (Chl a), particulate organic carbon (POC), and zooplankton, is affected by stratification and circulation from October to May. We observed an unusually warm autumn that likely delayed the onset of cooling and may have supported the high abundances of holoplankton and meroplankton (5768 individuals m–3). With the onset of winter, the water column cooled and became vertically mixed, while suspended Chl a concentrations declined rapidly (–3). In January and February, suspended POC concentrations and downward flux were elevated near the seafloor. The hydrodynamic model results indicate that the strongest currents at depth occurred in these months, potentially inducing resuspension events close to the seafloor. In spring (April), peak abundances of suspended biomass were observed (6.9–7.2 mg Chl a m–3 at 5–15 m; 9952 zooplankton ind. m–3 at 0–100 m), and field observations and model results suggest that zooplankton of Atlantic origin were probably advected into Kaldfjorden. During all investigated seasons, the model simulation suggests a complex circulation pattern, even in such a small fjord, which can have implications for environmental management of the fjord. We conclude that the pelagic system in Kaldfjorden changes continually from autumn to spring and that winter must be seen as a dynamic period, not a season where the fjord ecosystem is ‘at rest’

    Pelagic ecosystem dynamics between late autumn and the post spring bloom in a sub-Arctic fjord

    Get PDF
    Marine ecosystems, and particularly fjords, are experiencing an increasing level of human activity on a year-round basis, including the poorly studied winter period. To improve the knowledge base for environmentally sustainable management in all seasons, this study provides hydrographic and biological baseline data for the sub-Arctic fjord Kaldfjorden, Northern Norway (69.7° N, 18.7° E), between autumn 2017 and spring 2018. Field observations are integrated with results of a numerical ocean model simulation, illustrating how pelagic biomass, represented by chlorophyll a (Chl a), particulate organic carbon (POC), and zooplankton, is affected by stratification and circulation from October to May. We observed an unusually warm autumn that likely delayed the onset of cooling and may have supported the high abundances of holoplankton and meroplankton (5768 individuals m–3). With the onset of winter, the water column cooled and became vertically mixed, while suspended Chl a concentrations declined rapidly (< 0.12 mg Chl a m–3). In January and February, suspended POC concentrations and downward flux were elevated near the seafloor. The hydrodynamic model results indicate that the strongest currents at depth occurred in these months, potentially inducing resuspension events close to the seafloor. In spring (April), peak abundances of suspended biomass were observed (6.9–7.2 mg Chl a m–3 at 5–15 m; 9952 zooplankton ind. m–3 at 0–100 m), and field observations and model results suggest that zooplankton of Atlantic origin were probably advected into Kaldfjorden. During all investigated seasons, the model simulation suggests a complex circulation pattern, even in such a small fjord, which can have implications for environmental management of the fjord. We conclude that the pelagic system in Kaldfjorden changes continually from autumn to spring and that winter must be seen as a dynamic period, not a season where the fjord ecosystem is ‘at rest’.publishedVersio

    Neural responses when learning spatial and object sequencing tasks via imitation

    Get PDF
    Humans often learn new things via imitation. Here we draw on studies of imitation in children to characterise the brain system(s) involved in the imitation of different sequence types using functional magnetic resonance imaging. On each trial, healthy adult participants learned one of two rule types governing the sequencing of three pictures: a motor-spatial rule (in the spatial task) or an object-based rule (in the cognitive task). Sequences were learned via one of three demonstration types: a video of a hand selecting items in the sequence using a joystick (Hand condition), a computer display highlighting each item in order (Ghost condition), or a text-based demonstration of the sequence (Text condition). Participants then used a joystick to execute the learned sequence. Patterns of activation during demonstration observation suggest specialisation for object-based imitation in inferior frontal gyrus, specialisation for spatial sequences in anterior intraparietal sulcus (IPS), and a general preference for imitation in middle IPS. Adult behavioural performance contrasted with that of children in previous studies—indicating that they experienced more difficulty with the cognitive task—while neuroimaging results support the engagement of different neural regions when solving these tasks. Further study is needed on whether children’s differential performance is related to delayed IPS maturation

    Benchmarking database systems for Genomic Selection implementation

    Get PDF
    Motivation: With high-throughput genotyping systems now available, it has become feasible to fully integrate genotyping information into breeding programs. To make use of this information effectively requires DNA extraction facilities and marker production facilities that can efficiently deploy the desired set of markers across samples with a rapid turnaround time that allows for selection before crosses needed to be made. In reality, breeders often have a short window of time to make decisions by the time they are able to collect all their phenotyping data and receive corresponding genotyping data. This presents a challenge to organize information and utilize it in downstream analyses to support decisions made by breeders. In order to implement genomic selection routinely as part of breeding programs, one would need an efficient genotyping data storage system. We selected and benchmarked six popular open-source data storage systems, including relational database management and columnar storage systems. Results: We found that data extract times are greatly influenced by the orientation in which genotype data is stored in a system. HDF5 consistently performed best, in part because it can more efficiently work with both orientations of the allele matrix

    Polaronic state and nanometer-scale phase separation in colossal magnetoresistive manganites

    Full text link
    High resolution topographic images obtained by scanning tunneling microscope in the insulating state of Pr0.68Pb0.32MnO3 single crystals showed regular stripe-like or zigzag patterns on a width scale of 0.4 - 0.5 nm confirming a high temperature polaronic state. Spectroscopic studies revealed inhomogeneous maps of zero-bias conductance with small patches of metallic clusters on length scale of 2 - 3 nm only within a narrow temperature range close to the metal-insulator transition. The results give a direct observation of polarons in the insulating state, phase separation of nanometer-scale metallic clusters in the paramagnetic metallic state, and a homogeneous ferromagnetic state

    Nest location preferences in zoo-housed orangutans

    Get PDF
    Nest building is an advanced and complex activity that wild orangutans engage in, yet they do so on a daily basis and with potential safety consequences. Like their wild counterparts, zoo-housed orangutans also make nests when given adequate materials, yet comparatively little research has documented the nesting habits of captive orangutans, including potential social and environmental influences of nest site selections. We documented the night nesting behavior of six adult orangutans housed at the Smithsonian's National Zoological Park (NZP), identifying preferred nest locations and proximity to conspecifics, comparing observed patterns to those reported in a nest behavior survey of orangutan facilities throughout the Association of Zoos and Aquariums (AZA). Survey results reveal that in addition to several universal patterns of nesting behaviors, as in the wild, the sharing of night nests by captive adult orangutans occurs only rarely (2 of 31 surveyed facilities). Data collected at NZP indicate that night nearest neighbor associations among nesting conspecifics may be a useful proxy for actual nearest neighbor data taken during daytime social interactions and may offer a more feasible alternative for determining social relationships among large groups of socially housed orangutans
    corecore