Applied Animal Behaviour Science, 207, pp. 123-128. DOI: <u>https://doi.org/10.1016/j.applanim.2018.06.009</u> © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

- **Nest Location Preferences in Zoo-Housed Orangutans** 1 2 3 4 Meredith L. Bastian^a, David R. Glendinning^a, Alexandra J. Reddy^a, 5 Elizabeth S. Herrelko^{a,b}, Melba Brown^a, Elizabeth Renner^{b,c}, Laurie 6 **Thompson**^a 7 8 ^a Smithsonian's National Zoo and Conservation Biology Institute 9 Department of Animal Care Sciences 10 MRC 5507 11 Washington, DC 20013-7012 12 13 ^bUniversity of Stirling 14 Psychology 15 Stirling FK9 4LA 16 17 United Kingdom 18 19 ^c Center for the Advanced Study of Human Paleobiology 20 The George Washington University 800 22nd Street, NW 21 22 Suite 6000 23 Washington, DC 20052 24 25 26 Author email addresses: 27 M.L. Bastian (Corresponding author): BastianM@si.edu 28 D.R. Glendinning: GlendinningD@si.edu 29 A.J. Reddy: ReddyA@si.edu 30 E.S. Herrelko: HerrelkoE@si.edu 31 M. Brown: BrownMT@si.edu 32 E. Renner: lrenner@gwmail.gwu.edu 33 L. Thompson: ThompsonL@si.edu 34 35
 - 36 *Short title*: Orangutan Nesting Behavior
- 37

38 Abstract

39	Nest building is an advanced and complex activity that wild orangutans
40	engage in, yet they do so on a daily basis and with potential safety consequences.
41	Like their wild counterparts, zoo-housed orangutans also make nests when given
42	adequate materials, yet comparatively little research has documented the nesting
43	habits of captive orangutans, including potential social and environmental
44	influences of nest site selections. We documented the night nesting behavior of
45	six adult orangutans housed at the Smithsonian's National Zoological Park (NZP),
46	identifying preferred nest locations and proximity to conspecifics, comparing
47	observed patterns to those reported in a nest behavior survey of orangutan
48	facilities throughout the Association of Zoos and Aquariums (AZA). Survey
49	results reveal that in addition to several universal patterns of nesting behaviors, as
50	in the wild, the sharing of night nests by captive adult orangutans occurs only
51	rarely (2 of 31 surveyed facilities). Data collected at NZP indicate that night
52	nearest neighbor associations among nesting conspecifics may be a useful proxy
53	for actual nearest neighbor data taken during daytime social interactions and may
54	offer a more feasible alternative for determining social relationships among large
55	groups of socially housed orangutans.
56	

Keywords: orangutan; *Pongo*; nesting behavior; nearest neighbor

1. Introduction

60	Great ape nesting, particularly in the wild, has been broadly studied across
61	species. While the principal purpose of nest building is rest (Koops et al., 2012),
62	nest site selection and construction have been suggested to concomitantly support
63	a number of other desirable outcomes, including predator avoidance and
64	thermoregulation (Koops et al., 2012; Samson and Hunt, 2012). In a study of wild
65	bonobos (Pan paniscus), Fruth and Hohmann (1993) noted nest utilization in a
66	number of social contexts, including social grooming and play. Other wild-based
67	studies of great ape nests have focused on identifying preferences in tree species
68	(Baldwin et al., 1981; Mulavwa et al., 2010), differences in nest construction
69	between day and night chimpanzee (Pan troglodytes) nests (Riss and Goodall,
70	1976), and cultural differences among orangutan (Pongo spp.) populations in
71	various innovative behaviors in the nesting context (Bastian et al., 2012; Russon
72	et al., 2007; van Schaik et al., 2003).
73	Both wild and zoo-housed orangutans routinely build day and night nests (van
74	Casteren et al., 2012). The nesting platforms made by orangutans and other great
75	apes are most often built new each day and are sometimes rebuilt or reused (Fruth
76	and Hohmann, 1996; Prasetyo et al., 2009). Orangutan nests are also complex and
77	technologically sophisticated in structure (Prasetyo et al., 2009; van Casteren et
78	al., 2012).
79	Compared to that of their wild counterparts, the nesting behavior of
80	captive great ape populations has been relatively less studied. As has been
81	advocated for by other researchers (e.g. Anderson, 1998), there is a need to study

82	the sleeping patterns of zoo-housed primates in order to provide knowledge that
83	could lead to improvements in their welfare under human care. Opportunities to
84	study captive ape nesting behavior are likely to reveal insights into their sociality
85	and location preferences, which would aid in making husbandry decisions.
86	Weiche and Anderson (2007) report correlations between social activity and
87	nesting behavior in captive western lowland gorillas (Gorilla gorilla gorilla).
88	While room size and other environmental factors influenced sleeping sites, group
89	dynamics also played a role, with associations based on kinship being most
90	evident.
91	The traditional method of determining social partner preferences and
92	associations in primates is through the identification of nearest neighbors during
93	daytime activity periods, where social dynamics are evaluated by recording the
94	spatial proximity between each pair of individuals (e.g. Gould, 1997; Taylor &
95	Sussman, 1985; White & Chapman, 1994). Previous studies have analyzed the
96	relationship of daytime associations on sleeping site selections in captive
97	chimpanzees. Riss and Goodall (1976) found that captive chimpanzees
98	maintained sleeping partner preferences that were directly related to early rearing
99	experiences when they were in smaller subgroups, although the social
100	relationships between preferred sleeping partners and others did not differ based
101	on the frequency of affiliative behaviors. In a mixed-sex group of 11 captive
102	chimpanzees, Lock and Anderson (2013) found that neither daytime associations
103	nor the presence of related animals influenced female sleeping site selection.

104 Among the males, however, they did find a significant correlation between the105 frequency of daytime associations and shared sleeping locations.

106	Unlike African apes, wild orangutans do not live in stable social groups.
107	Social nesting (more than one independently ranging orangutan nesting within
108	50m of each other overnight) occurred in less than 4% of all night nests
109	documented in a high-density population of wild Bornean orangutans (Bastian,
110	2008; Bastian, unpublished results). Thus, wild-based studies offer little insight
111	into how orangutan night nest site selection may relate to social associations in
112	captive populations, where group housing is the norm. Observations of zoo-
113	housed orangutan nesting behavior provide an opportunity to note social
114	dynamics that may not be revealed in the study of wild populations.
115	Night nests are of particular interest, as primates spend approximately half
116	of their life at sleeping sites (Anderson, 1998). As one example, using infrared
117	videography to document the sleep architecture of a group of captive orangutans,
118	Samson and Shumaker (2015a, 2015b, 2013) found, in a zoo setting, that a
119	comfortable sleeping environment helped improve orangutan sleep quality, which
120	they identified as being deeper and more efficient than the sleep of baboons
121	(which do not build nests). Aside from these findings, few data are available on
122	the nesting behavior of captive orangutans, a gap that has been identified as a high
123	priority for future research (Samson and Shumaker, 2013).
124	This study examines two cases in which anecdotal observations previously
125	suggested that patterns of nesting behavior could be useful to the care and
126	management of a population of zoo-housed orangutans. First, we hypothesized

127	that nearest neighbor associations based on the proximity of night nests could
128	effectively inform decisions about housing options based on orangutan
129	preferences. We also predicted that as in wild orangutan populations, where
130	orangutan nests cluster in specific areas within even extremely homogeneous
131	habitats and night nest site re-visitation is common (Bastian, unpublished results),
132	night nest locations chosen by orangutans at Smithsonian's National Zoological
133	Park (NZP) would show consistent patterns. Our results are analyzed in relation to
134	a survey about zoo-housed orangutan nesting behavior from 31 participating
135	facilities across AZA.
136	
137	[INSERT TABLE 1 HERE]
138	
139	
140	
141	
142	

2. Material and Methods

144 2.1 Study Populations

145	The primary study population consisted of two Bornean orangutans and
146	four Bornean-Sumatran hybrids, socially housed at the Great Ape House (GAH)
147	and the Think Tank (TT) facilities at NZP: two adult males, Kiko (hybrid, 27yrs
148	at start of data collection) and Kyle (Bornean, 18); and four adult females, Batang
149	(Bornean, 18), Bonnie (hybrid, 38), Iris (hybrid, 28), and Lucy (hybrid, 42). The
150	orangutans were housed using a flexible management protocol based on historical
151	social interactions between each pair of individuals and focused around Batang,
152	who was able to socialize peacefully with all other orangutans and was pregnant
153	during this study (Table 2). The adult males were always separated, as were
154	certain combinations of females, although they were frequently housed in
155	adjacent rooms. Lucy was most usually housed alone when inside, including
156	overnight; thus, she is only listed within social configurations in outside
157	circumstances.
158	
159	[INSERT TABLE 2 HERE]
160	
161	2.2 Orangutan Exhibits
162	Indoor orangutan housing at GAH consisted of six rooms with flexibly
163	configured climbing structures, platforms, water features, spools, tubes, and
164	hammocks of various dimensions (Figure 1). This layout allowed for the six
165	rooms to be open or closed to each adjacent room via hydraulic doors, providing

166	staff the ability to choose from multiple housing configurations depending on
167	which and how many individual orangutans were given access to one another on a
168	particular night. Each room included a water source: a licker (a small metal pipe
169	that when depressed provides a source of drinking water), waterfall, small pool, or
170	combination of these. Artificial trees were found in all but two (rooms 1 and 4) of
171	the six enclosures and all had some sort of elevated platform. Ceiling height
172	varied across rooms, ranging from 2.4m (8ft) in room 1 and 5.2m (17ft) in room 4
173	to 7m (23ft) in rooms 2 and 3 and 7.6m (25ft) in rooms 5 and 6. With the
174	exception of rooms 1 and 4, rooms were visible from the public area.
175	Keepers could easily transfer orangutans to or from outdoor yards and the
176	Orangutan Transit System (or "O-line") through elevated chutes running from
177	rooms 3, 5 and 6 of GAH and a holding room at TT. Orangutan yards at both
178	GAH and TT consisted of grassy areas with access to a tower leading to the O-
179	line. The O-line, a series of eight 13.7m (45ft) high towers, connected by 16.6m
180	(50ft) high plastic-coated steel cables, allowed the orangutans to travel via the
181	yards and across the cables between buildings, so they could nest at either
182	location if given access by keepers. Only one adult female, Lucy, has never
183	chosen to travel across the O-line since its construction in 1995, so her nests were
184	found only at GAH.
185	The indoor orangutan area at TT consisted of a primary living space - a
186	single room of approximately $67.4m^2$ (725 ft ²) with a 5.2m (17ft) ceiling,
187	provisioned with fire hose and other climbing opportunities, shelving at various

188	heights, a holding enclosure, and room designed for public research
189	demonstrations (Figure 2).
190	
191	[INSERT FIGURES 1 & 2 HERE]
192	
193	2.3 Data Collection and Analysis
194	For purposes of this study, we defined a "nest" as an orangutan-made
195	structure formed by manipulating leaves, hay, or other material for use as a
196	platform for resting or sleeping. As the focus of this study was on night nests, data
197	at NZP were recorded twice each day, once in the evening as the building was
198	closed by departing keepers (1630-1830h, depending on season) and again the
199	following morning at first staff arrival (0630-0700h). The study covered the
200	period July 2014 - July 2015. Emphasis was placed on recording night nest
201	location preferences, nest fidelity (as opposed to abandonment in favor of another
202	nest), and the proximity of a nest to the nesting animal's nearest neighbor. From
203	February - July 2015 we collected daytime nearest neighbor data within groups of
204	socially housed NZP orangutans, focusing on individual animals across four time
205	periods spanning the full keeper day (e.g., 0700-0900h, 0900-1100h, 1100-1300h,
206	1300-1500h). Within those periods, data was recorded on the focal animal every
207	five minutes over a 30 min interval. Rotating among focal animals to ensure a
208	balanced distribution of data collection for all orangutans, we collected data
209	between two to three days a week for a total of forty-one hours over 38 days.
210	Both daytime and night nest nearest neighbor data were collected for associations

of individuals within 10m (32.8ft) rather than within the 50m distance used in
wild studies due to the space restrictions of captive environments. These data
were then used to produce proximity matrices based on nearest neighbor data.
Due to staffing and schedules, priority was given to nests and activity at GAH,
with opportunistic data collected at TT.

216 The closing keeper recorded the location of all occupied orangutan night 217 nests in each building on a facility map containing several fixed landmarks within 218 each enclosure (Figure 1), onto which scaled measurements of distance between 219 rooms were overlaid to determine the proximity of nesting nearest neighbor 220 orangutans in relation to the focal individual and overnight nest fidelity. In the 221 mornings, the first-arriving staff member to walk through the orangutan line 222 recorded the position of each occupied nest on the previous evening's nest 223 location map, indicating the position of any new nests, changes of nest location, 224 and identity of which individual occupied each nest. 225 We also disseminated a survey throughout AZA to document generally the 226 nesting habits and location preferences observed among zoo-housed orangutans at 227 30 other facilities. Analysis of nesting behaviors across zoos excluded individual 228 orangutans not yet engaging in nest building behavior.

229 Contrasts of categorical NZP data were analyzed using Chi-square

230 Goodness of Fit tests. SOCPROG Compiled v. 2.7 (Whitehead, 2009) was used to

analyze data on the social structure and associations among NZP orangutans. We

defined the NZP social "group" on a given evening as all orangutans with access

to the same or adjacent enclosures, since individual orangutans in adjacent

234	enclosures with mesh access could choose to spend time in closer proximity to
235	one another than to individuals housed in the same enclosure. Social network
236	analysis statistics were performed on composite matrices within SOCPROG, the
237	output of which were used to generate sociograms using NetDraw 2.160
238	(Borgatti, 2002) in order to visually present social relationships among individual
239	orangutans using each measure of nearest neighbor association.
240	The Dietz R matrix correlation test (Dietz, 1983) using 1000 permutations
241	implemented in SOCPROG 2.7 was used to determine whether we were justified
242	in creating composite matrices based on NZP nearest neighbor and group
243	composition data for day and night nest methods of assessing nearest neighbor
244	associations. A Dietz R-test was also used to analyze matrices generated from
245	day and night nest nearest neighbor methods. Dietz's (1983) R-test is the same as
246	a Mantel test but the Dietz test is analogous to Spearman's rank correlation
247	coefficient with values of the matrices replaced by their ranks, so the Dietz test is
248	much less strongly affected by outlying values than the Mantel test. All tests were
249	two-tailed and alpha was set at 0.05.
250	

3. Results

268

252 3.1 Nest Location Preferences

253 We recorded a total of 851 night nests. Although NZP orangutans were 254 most often found in a *different nest* the next morning, indicating low nest fidelity 255 $(\chi^2 = 41.51, df = 1, p < 0.001)$, the data indicate high room fidelity, as they were 256 most often found in a nest in the *same room* as the last nest recorded the previous day ($\chi^2 = 4.27$, df = 1, p = 0.046). Chi-square analyses revealed that within GAH, 257 in nights during which multiple rooms were available, Bonnie ($\chi^2 = 58.48$), Kyle 258 $(\chi^2 = 54.24)$, and Iris $(\chi^2 = 23.93)$ showed a clear preference for off-exhibit room 259 4 (p < 0.0001), whereas on-exhibit room 5 was preferred by Batang ($\chi^2 = 81.93$) 260 and Lucy ($\chi^2 = 22.56$) and on-exhibit room 5 was preferred by Kiko ($\chi^2 = 34.37$), 261 262 df = 1, p < 0.0001.Significantly more night nests were made on the ground at both GAH (χ^2 263

263 Significantly more night nests were made on the ground at both GAH (χ 264 = 523.62, df = 1, *p* < 0.001) and TT (χ^2 = 89.04, df = 1, *p* < 0.001), although nests 265 on shelves and in hammocks were also occasionally observed and elevated nests 266 were built more frequently at GAH than at TT (χ^2 = 6.37, df = 1, *p* = 0.012). Of 267 the 31 zoos surveyed, including NZP, 100% reported giving their orangutans

269 occasional nesting above ground, although survey responses indicate that ground270 nesting is most typical in a zoo setting.

opportunities for building elevated nests, 87% of which reported at least

Over time at NZP, we observed all four female orangutans, but no males,
partially plug water lickers at one time or another and all orangutans nesting in
close proximity to them. Our study observations confirmed that at NZP, all six

orangutans showed statistically significant (Chi-square analyses, p < 0.05)

- 275 preferences for nesting in rooms with water lickers over those with alternative
- 276 water sources but without lickers.
- 277 Previous studies have shown that zoo-housed orangutans are known to
- 278 partially plug water licker mechanisms with a variety of materials to create a
- constant flow of water (Shumaker et al., 2011). In our nest behavior survey, 28 of
- 280 31 AZA facilities reported that one or more individual orangutans regularly
- 281 partially plug lickers, most individuals also place objects under the water stream,
- amplifying the sound in many cases.
- 283 Of the 28 AZA facilities with individuals known to plug lickers, 17 indicated that
- at least one orangutan frequently builds nests in close proximity to partially
- 285 plugged lickers.
- 286

287 3.2. Night Nest Sharing

Day nest sharing was observed at four (13%) of the 31 zoos surveyed.
Night nest sharing was observed at NZP and only one other of the surveyed
facilities (7%). At NZP, adult orangutans (one male-female and one femalefemale dyad) shared a single night nest in nearly 3% (22 out of 851) of all
recorded night nests. We considered incidences of night nest sharing as occurring
or not based on nesting associations recorded by keepers as the orangutans settled
into their night nests and as they were found the next morning.

296 3.3. Orangutan Social Networks

297	Dietz R-tests confirmed that for both traditional daytime nearest neighbor
298	(R=0.625, p=0.019) and night nest nearest neighbor $(R=0.657, p=0.05)$
299	methods, nearest neighbor and group composition matrices could be combined to
300	form composite matrices in which nearest neighbor data controlled for time
301	individuals were housed in close proximity to one another. Figure 3 presents
302	sociograms to visually represent associations between orangutan dyads using
303	daytime nearest neighbor and night nest nearest neighbor methods. A comparison
304	of composite matrices based on daytime nearest neighbor and night nest nearest
305	neighbor data revealed that the night nest nearest neighbor data reliably predicted
306	daytime nearest neighbor associations (Dietz's R-test: $R = 0.692$, $p = 0.001$).
307	
308	[INSERT FIGURE 3 HERE]

309 4. Discussion

310 Although we found relatively high room fidelity in instances where 311 individuals had a choice of rooms in which to nest, nest fidelity within rooms 312 among NZP orangutans was lower. Low nest fidelity within rooms could indicate 313 restless sleep patterns, be influenced by conspecifics (which do not typically nest 314 within close proximity in the wild), or signal the abandonment of nests at the 315 arrival of early morning keeper staff. Individual NZP orangutans also showed 316 significant preferences for particular rooms within buildings and locations within 317 rooms. A preference for an off-exhibit room was detected for some individuals, 318 confirming the importance of offering choice (Herrelko et al., 2015) to orangutans 319 to use off-exhibit space in the late afternoon as they settle into their night nests. 320 Although a majority of documented night nests were located at ground 321 level, when arboreal nesting did take place, it occurred most frequently in fire 322 hose hammocks where hay and cloth were transported by an orangutan to create a 323 nest. Compared to nearly exclusive arboreal nesting by wild orangutans, which 324 are found at the highest densities in swamp forests (Husson et al., 2009), ground 325 nesting in zoo-housed orangutans could be related to the lack of ground-dwelling 326 predators, convenient access to food and water sources, and the typically dry 327 substrate offered in zoo environments. Furthermore, access doors connecting one 328 room to another are at ground level, as are interactions between orangutans and 329 their caregivers. Another consideration for zoo-housed populations may include a 330 lack of sufficient structures, nesting materials, or open space above them, as

perceived by the orangutans, something for which additional study may bewarranted.

333 As a matter of husbandry, tracking orangutan night nest location 334 preferences can help primate keepers identify the few preferred arboreal nesting 335 locations, which can be targeted to encourage nesting off the ground to more 336 closely approximate typical wild orangutan nesting behavior. Consideration for 337 orangutan facility design should maximize arboreal elements whenever possible, 338 enhancing opportunities for public education relating to species-typical behavior 339 and to learn more about orangutan preferences when given options. 340 Of potential importance to captive group management strategies, our 341 comparison of daytime nearest neighbor data with observations of night nesting 342 proximity among members of the NZP group reveals that overall, nesting 343 information accurately predicted preferential social relationships. The few visual 344 differences in the relative strength of dyadic associations between the sociograms 345 in Figure 3 can be explained based on differences in daytime vs. nighttime 346 orangutan housing arrangements. For example, the stronger relationship indicated 347 between Lucy and Batang at night may be explained by the fact that Lucy had 348 more frequent opportunities to associate with Batang at night at GAH than during 349 the day when Batang had more physical location opportunities. Batang was a 350 frequent O-line traveler when given the opportunity, while Lucy never traveled, 351 giving Batang and others in her group access to areas (including TT) where Lucy 352 would not go. Further, the weaker relationship between Iris and Batang at night is 353 consistent with the authors' observations, recorded for another study, that Iris is

354	primarily responsible for maintaining close proximity to Batang when the pair is
355	housed together during the day. At times when they were housed together at
356	night, it could be that for Iris, rest is prioritized over social interaction with
357	Batang, giving Batang the opportunity to select a nest site away from Iris without
358	being pursued. This specific social dynamic and the differences noted between
359	daytime and nighttime relationships present the opportunity for further study.
360	Nesting nearest neighbor data may therefore be a highly valuable, yet overlooked
361	predictive tool.
362	In the case of both the Lucy-Batang and Iris-Batang female dyads, we
363	found night nest nearest neighbor data to more closely reflect subtle social
364	dynamics between individuals than daytime nearest neighbor calculations.
365	Although Iris often followed Batang closely during the day when the two were
366	housed together, maintaining close proximity, their night nests were rarely
367	observed in the same room, which was consistent with our subjective
368	observations. Relying solely on daytime nearest neighbor data may result in a bias
369	towards more dominant individuals, whereas night nest site proximity data may
370	more accurately reflect the preferred social dynamics of particular dyads.
371	Although observations of approach-leave interactions can be used to
372	calculate the Hinde Index, a calculation determining which member of a particular
373	dyad is most responsible for maintaining proximity (Hinde & Atkinson, 1970),
374	collection of approach-leave data can be cumbersome and requires considerable
375	time outside normal staff activities. We therefore propose that the night nest
376	nearest neighbor method for detecting social relationships described in this paper

377 is a viable proxy for traditional daytime nearest neighbor data, and perhaps a 378 superior method of identifying preferred dyadic social relationships in zoos, 379 where observations of night nest nearest neighbors can be recorded by staff during 380 the course of their normal husbandry routine. 381 Somewhat surprisingly, considering the close proximity with which many 382 zoo-housed orangutans nest, nest sharing between two adult orangutans during 383 overnight periods is relatively rare across AZA institutions, reported at only one 384 facility besides NZP. This observation is consistent with wild data, however, 385 which indicate that nest sharing at night is rare among dyads of all age-sex classes 386 besides mother-infant (Groves and Pi, 1985) and identify night nest sharing 387 between a sexually mature adult male and female as a cultural behavior, occurring 388 in only two wild populations (Bastian et al., 2012). 389 Nearly all reporting AZA facilities, including NZP, have orangutans who 390 regularly plug water lickers, with 60% of those facilities stating that at least one 391 orangutan nests in close proximity to them, warranting further investigation. The 392 recent installation of cameras in the orangutan area at NZP presents an 393 opportunity for future investigation of orangutan nighttime activities, which may 394 help determine when and why individuals move from their nests within preferred 395 rooms overnight. 396

398 Our study of the night n

5. Conclusions

397

Our study of the night nesting behavior of six adult orangutans at NZP,
together with results of a survey of 30 additional AZA member zoos, revealed

400 insights into nest location preferences, sociality, and innovative behavior in the 401 nesting context. Night nest room location preferences followed consistent 402 patterns, including a strong preference for ground nesting. Orangutans at a 403 majority of AZA facilities surveyed, including NZP, have at least one orangutan 404 who nests in close proximity to plugged water lickers. 405 We conclude that nearest neighbor associations based on the proximity of 406 night nests could reliably predict preferred daytime associations, a finding that 407 may offer animal care staff a practical and efficient method to determine 408 associations among socially housed orangutans and support population care and 409 management decisions in a zoo setting. 410

411 Acknowledgements

412	We thank all members of the primate keeper team at the National Zoo for
413	helping collect orangutan nest location data and the Smithsonian Institution for
414	providing access to the Zoo's living orangutan collection. E.S. Herrelko was
415	supported during this study by the David Bohnett Foundation. We also thank
416	Jennifer Botting and two anonymous reviewers for their thoughtful comments on
417	the manuscript and the participants of our nest behavior survey, representing 31
418	zoos from across the AZA.
419	
420	

References

423	Anderson, J.R., 1998. Sleep, sleeping sites, and sleep-related activities:
424	Awakening to their significance. Am. J. Primatol. 46, 63-75.
425	Baldwin, P.J., Sabater Pi, J., McGrew, W.C., Tutin, C.E.G., 1981. Comparisons of
426	nests made by different populations of chimpanzees (Pan troglodytes).
427	Primates 22(4), 474-486.
428	Bastian, M.L., 2008. Effects of a riverine dispersal barrier on cultural similarity in
429	wild Bornean orangutans (Pongo pygmaeus wurmbii). PhD dissertation,
430	Duke University, Durham, NC.
431	Bastian, M.L., van Noordwijk, M.A., van Schaik, C.P., 2012. Innovative
432	behaviors in wild Bornean orangutans revealed by targeted population
433	comparison. Behaviour 149, 275-297.
434	Borgatti, S.P., 2002. NetDraw Software for Network Visualization. Analytic
435	Technologies, Lexington, KY.
436	Dietz, E.J., 1983. Permutation tests for association between two distance matrices.
437	Syst. Zool. 32, 21-26.
438	Fruth, B., Hohmann, G., 1993. Ecological and behavioral aspects of nest building
439	in wild bonobos (Pan paniscus). Ethology 94(2), 113-126.
440	Fruth, B., Hohmann, G., 1996. Comparative Analyses of Nest Building Behavior
441	in Bonobos and Chimpanzees, in: Wrangham, R.W., McGrew, W.C., de
442	Waal, F.B.M., Heltne, P.G. (Eds), Chimpanzee Cultures. Harvard
443	University Press, Cambridge, MA, pp. 109-128.

444	Gould, L., 1997. Intermale affiliative behavior in ringtailed lemurs (Lemur catta)
445	at the Beza-Mahafaly reserve, Madagascar. Primates 38(1), 15-30.
446	Groves, C.P., Pi, J.S., 1985. From ape's nest to human fix-point. Man 20(1), 22-
447	47.
448	Herrelko, E.S., Buchanan-Smith, H.M., Vick, S., 2015. Perception of available
449	space during chimpanzee introductions: Number of accessible areas is
450	more important than enclosure size. Zoo Biol. 34, 397-405.
451	Hinde, R.A., Atkinson, S., 1970. Assessing the roles of social partners in
452	maintaining mutual proximity, as exemplified by mother-infant relations
453	in monkeys. Anim. Behav. 18, 169-176.
454	Husson, S., Wich, S.A., Marshall, A.J., Dennis, R.D., Ancrenaz, M., Brassey, R.,
455	Gumal, M., Hearn, A.J., Meijaard, E., Simorangkir, T., Singleton, I., 2009.
456	Orangutan distribution, density, abundance and impacts of disturbance, in:
457	Wich, S.A., Utami Atmoko, S.S., Mitra Setia, T., van Schaik C.P. (Eds.),
458	Orangutans: Geographic Variation in Behavioral Ecology and
459	Conservation. Oxford University Press, Oxford, pp. 77-96.
460	Koops, K., McGrew, W. C., Matsuzawa, T. and Knapp, L. A. (2012), Terrestrial
461	nest-building by wild chimpanzees (Pan troglodytes): Implications for
462	the tree-to-ground sleep transition in early hominins. Am. J. Phys.
463	Anthropol. 148, 351–361.
464	Lock, L.C., Anderson, J.R., 2013. Kin, daytime associations, or preferred sleeping
465	sites? Factors influencing sleep site selection in captive chimpanzees (Pan
466	troglodytes). Folia Primatol. 84, 158-169.

467	Mulavwa, M.N., Yangozene, K., Yamba-Yamba, M., Motema-Salo, B., Mwanza,
468	N.N., Furuichi, T., 2010. Nest groups of wild bonobos at Wamba:
469	selection of vegetation and tree species and relationships between nest
470	group size and party size. Am. J. Primatol. 72(7), 575-586.
471	Prasetyo, D., Ancrenaz, M., Morrogh-Bernard, H.C., Atmoko, S.S.U., Wich, S.A.,
472	van Schaik, C.P., 2009. Nest Building in Orangutans, in: (Wich, S.A.,
473	Utami Atmoko, S.S., Mitra Setia, T., van Schaik CP (Eds.), Orangutans:
474	Geographic Variation in Behavioral Ecology and Conservation. Oxford
475	University Press, Oxford, pp. 269-276.
476	Riss, D., Goodall, J., 1976. Sleeping behavior and associations in a group of
477	captive chimpanzees. Folia Primatol. 25, 1-11.
478	Russon, A.E., Handayani, D.P., Kuncoro, P., Ferisa, A., 2007. Orangutan leaf-
479	carrying for nest-building: toward unraveling cultural processes. Anim.
480	Cogn. 10, 189-202.
481	Samson, D.R., Hunt, K.D., 2012. A thermodynamic comparison of arboreal and
482	terrestrial sleeping sites for dry-habitat chimpanzees (Pan troglodytes
483	schweinfurthii) at the Toro-Semliki Wildlife Reserve, Uganda. Am. J.
484	Primotol. 74, 811–818
485	Samson, D.R., Shumaker, R.W., 2013. Documenting orang-utan sleep
486	architecture: sleeping platform complexity increases sleep quality in
487	captive Pongo. Behaviour 150, 845-862.

488	Samson, D.R., Shumaker, R.W., 2015a. Orangutans (Pongo Spp.) have deeper,
489	more efficient sleep than baboons (Papio papio) in captivity. Am. J. Phys.
490	Anthropol. 157, 421-427.
491	Samson, D.R., Shumaker, R.W., 2015b. Pre-sleep and sleeping platform
492	construction behavior in captive orangutans (Pongo spp.): Implications for
493	ape health and welfare. Folia Primatol. 86, 187-202.
494	Shumaker, R.W., Walkup, K.R., Beck, B.B., 2011. Animal Tool Behavior: The
495	Use and Manufacture of Tools by Animals. The John Hopkins University
496	Press, Baltimore, MD.
497	Taylor, L., Sussman, R.W., 1985. A preliminary study of kinship and social
498	organization in a semi-free-ranging group of Lemur catta. Int. J. Primatol.
499	6(6), 601-614.
500	van Casteren, A., Sellers, W.I., Thorpe, S.K.S., Coward, S., Crompton, R.H.,
501	Myatt, J.P., Ennos, A.R., 2012. Nest-building orangutans demonstrate
502	engineering know-how to produce safe, comfortable beds. PNAS 109(18),
503	6873-6877.
504	van Schaik, C.P., Ancrenaz, M., Borgen, G., Galdikas, B., Knott, C.D., Singleton,
505	I., Suzuki, A., Utami, S.S., Merrill, M., 2003. Orangutan cultures and the
506	evolution of material cultures. Science 299, 102-105.
507	Weiche, I., Anderson, J.R., 2007. Influence of social and environmental factors on
508	nesting behaviour in captive gorillas (Gorilla gorilla gorilla). Folia
509	Primatol. 78, 154-165.

- 510 White, F.J., Chapman, C.A., 1994. Contrasting chimpanzees and bonobos:
- 511 Nearest neighbor distances and choices. Folia Primatol. 63(4), 181-191.
- 512 Whitehead, H., 2009. SOCPROG programs: analysing animal social structures.
- 513 Behav. Ecol. Sociobiol. 63, 765–778.