28 research outputs found

    Impact of donor lung quality on post-transplant recipient outcome in the Lung Allocation Score era in Eurotransplant - a historical prospective study

    Get PDF
    The aim of this study was to investigate whether there is an impact of donation rates on the quality of lungs used for transplantation and whether donor lung quality affects post-transplant outcome in the current LAS era. All consecutive adult LTx performed in Eurotransplant (ET) between January 2012 and December 2016 were included (N=3053). Donors used for LTx in countries with high donation rate were younger (42% vs. 33% ≤ 45 years, p<0.0001), were less often smokers (35% vs. 46%, p<0.0001), had more often clear chest X-rays (82% vs. 72%, p<0.0001), had better donor oxygenation ratio's (20% vs. 26% with PaO /FiO ≤ 300 mmHg, p<0.0001) and had better lung donor score values (LDS) (28% vs. 17% with LDS=6, p<0.0001) compared to donors used for LTx in countries with low donation rate. Survival rates for the groups LDS =6 and ≥7 at 5 years were 69.7% and 60.9% (p=0.007). Lung donor quality significantly impacts on long-term patient survival. Countries with a low donation rate are more oriented to using donor lungs with a lesser quality compared to countries with a high donation rate. Instead of further stretching donor eligibility criteria, the full potential of the donor pool should be realized

    Impact of donor lung quality on post-transplant recipient outcome in the Lung Allocation Score era in Eurotransplant – a historical prospective study

    Get PDF
    The aim of this study was to investigate whether there is an impact of donation rates on the quality of lungs used for transplantation and whether donor lung quality affects post-transplant outcome in the current Lung Allocation Score era. All consecutive adult LTx performed in Eurotransplant (ET) between January 2012 and December 2016 were included (N = 3053). Donors used for LTx in countries with high donation rate were younger (42% vs. 33% ≤45 years, P < 0.0001), were less often smokers (35% vs. 46%, P < 0.0001), had more often clear chest X-rays (82% vs. 72%, P < 0.0001), had better donor oxygenation ratios (20% vs. 26% with PaO2/FiO2 ≤ 300 mmHg, P < 0.0001), and had better lung donor score values (LDS; 28% vs. 17% with LDS = 6, P < 0.0001) compared with donors used for LTx in countries with low donation rate. Survival rates for the groups LDS = 6 and ≥7 at 5 years were 69.7% and 60.9% (P = 0.007). Lung donor quality significantly impacts on long-term patient survival. Countries with a low donation rate are more oriented to using donor lungs with a lesser quality compared to countries with a high donation rate. Instead of further stretching donor eligibility criteria, the full potential of the donor pool should be realized

    Lung allocation score: The Eurotransplant model versus the revised US model - a cross-sectional study

    Get PDF
    Both Eurotransplant (ET) and the US use the lung allocation score (LAS) to allocate donor lungs. In 2015, the US implemented a new algorithm for calculating the score while ET has fine-tuned the original model using business rules. A comparison of both models in a contemporary patient cohort was performed. The rank positions and the correlation between both scores were calculated for all patients on the active waiting list in ET. On February 6th 2017, 581 patients were actively listed on the lung transplant waiting list. The median LAS values were 32.56 and 32.70 in ET and the US, respectively. The overall correlation coefficient between both scores was 0.71. Forty-three per cent of the patients had a < 2 point change in their LAS. US LAS was more than two points lower for 41% and more than two points higher for 16% of the patients. Median ranks and the 90th percentiles for all diagnosis groups did not differ between both scores. Implementing the 2015 US LAS model would not significantly alter the current waiting list in ET

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years

    Get PDF
    Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large‐scale studies. In response, we used cross‐sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to infer age‐related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta‐analysis and one‐way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns
    corecore