527 research outputs found
On the basis of the Burnside ring of a fusion system
We consider the Burnside ring A(F) of F-stable S-sets for a saturated fusion system F defined on a p-group S. It is shown by S.P. Reeh that the monoid of F-stable sets is a free commutative monoid with canonical basis {αP}. We give an explicit formula that describes αP as an S-set. In the formula we use a combinatorial concept called broken chains which we introduce to understand inverses of modified Möbius functions. © 2014 Elsevier Inc
Climate Noise Influences Ice Sheet Mean State
Evidence from proxy records indicates that millennialâscale abrupt climate shifts, called DansgaardâOeschger events, happened during past glacial cycles. Various studies have been conducted to uncover the physical mechanism behind them, based on the assumption that climate mean state determines the variability. However, our study shows that the DansgaardâOeschger events can regulate the mean state of the Northern Hemisphere ice sheets. Sensitivity experiments show that the simulated mean state is influenced by the amplitude of the climatic noise. The most likely cause of this phenomenon is the nonlinear response of the surface mass balance to temperature. It could also cause the retreat processes to be faster than the buildup processes within a glacial cycle. We propose that the climate variability hindered ice sheet development and prevented the Earth system from entering a full glacial state from Marine Isotope Stage 4 to Marine Isotope Stage 3 about 60,000 years ago
Tick range expansion to higher elevations: does Borrelia burgdorferi sensu lato facilitate the colonisation of marginal habitats?
This is the final version. Available on open access from BMC via the DOI in this recordAvailability of data and materials:
The dataset supporting the conclusions of this article is included within the article and its additional files.Background
Parasites can alter host and vector phenotype and thereby affect ecological processes in natural populations. Laboratory studies have suggested that Borrelia burgdorferi sensu lato, the causative agent of human Lyme borreliosis, may induce physiological and behavioural alterations in its main tick vector in Europe, Ixodes ricinus, which increase the tickâs mobility and survival under challenging conditions. These phenotypic alterations may allow I. ricinus to colonise marginal habitats (âfacilitation hypothesisâ), thereby fuelling the ongoing range expansion of I. ricinus towards higher elevations and latitudes induced by climate change. To explore the potential for such an effect under natural conditions, we studied the prevalence of B. burgdorferi s.l. in questing I. ricinus and its variation with elevation in the Swiss Alps.
Results
We screened for B. burgdorferi s.l. infection in questing nymphs of I. ricinus (Nâ=â411) from 15 sites between 528 and 1774 m.a.s.l to test if B. burgdorferi s.l. prevalence is higher at high elevations (i.e. in marginal habitats). Opposite of what is predicted under the facilitation hypothesis, we found that B. burgdorferi s.l. prevalence in I. ricinus nymphs decreased with increasing elevation and that Borrelia prevalence was 12.6% lower in I. ricinus nymphs collected at the range margin compared to nymphs in the core range. But there was no association between Borrelia prevalence and elevation within the core range of I. ricinus. Therefore the observed pattern was more consistent with a sudden decrease in Borrelia prevalence above a certain elevation, rather than a gradual decline with increasing elevation across the entire tick range.
Conclusions
In conclusion, we found no evidence that B. burgdorferi s.l.-induced alterations of I. ricinus phenotype observed in laboratory studies facilitate the colonisation of marginal habitats in the wild. Rather, ticks in marginal habitats are substantially less likely to harbour the pathogen. These findings have implications for a better understanding of eco-evolutionary processes in natural host-parasite systems, as well as the assessment of Lyme borreliosis risk in regions where I. ricinus is newly emerging.University of ZurichSwiss National Science FoundationBaugarten Stiftung & Stiftung fĂŒr wissenschaftliche Forschung an der UniversitĂ€t ZĂŒrichGeorges und Antoine Claraz-Schenkun
Unitary Positive-Energy Representations of Scalar Bilocal Quantum Fields
The superselection sectors of two classes of scalar bilocal quantum fields in
D>=4 dimensions are explicitly determined by working out the constraints
imposed by unitarity. The resulting classification in terms of the dual of the
respective gauge groups U(N) and O(N) confirms the expectations based on
general results obtained in the framework of local nets in algebraic quantum
field theory, but the approach using standard Lie algebra methods rather than
abstract duality theory is complementary. The result indicates that one does
not lose interesting models if one postulates the absence of scalar fields of
dimension D-2 in models with global conformal invariance. Another remarkable
outcome is the observation that, with an appropriate choice of the Hamiltonian,
a Lie algebra embedded into the associative algebra of observables completely
fixes the representation theory.Comment: 27 pages, v3: result improved by eliminating redundant assumptio
Thermodynamics of Heat Shock Response
Production of heat shock proteins are induced when a living cell is exposed
to a rise in temperature. The heat shock response of protein DnaK synthesis in
E.coli for temperature shifts from temperature T to T plus 7 degrees,
respectively to T minus 7 degrees is measured as function of the initial
temperature T. We observe a reversed heat shock at low T. The magnitude of the
shock increases when one increase the distance to the temperature , thereby mimicking the non monotous stability of proteins at low
temperature. Further we found that the variation of the heat shock with T
quantitatively follows the thermodynamic stability of proteins with
temperature. This suggest that stability related to hot as well as cold
unfolding of proteins is directly implemented in the biological control of
protein folding. We demonstrate that such an implementation is possible in a
minimalistic chemical network.Comment: To be published in Physical Review Letter
Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones.
Protease-activated receptors (PAR1-4) are activated by proteases released by cell damage or blood clotting, and are known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of the PAR1, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a specific PAR1 or PAR4 activating peptide (PAR1/4-AP) caused functional effects characteristic of activation of the PLCÎČ/PKC pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCΔ) to the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to thrombin or PAR1-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which expressed markers for myelinated fibres. Sequential application of PAR1-AP and PAR4-AP showed that PAR4 is expressed in a subset of the PAR1-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a distinct population of small IB4+ nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1-AP. Culture with nerve growth factor (NGF) increased the proportion of thrombin-responsive neurons in the IB4- population, while glial-derived neurotropic factor (GDNF) and neurturin upregulated the proportion of thrombin-responsive neurons in the IB4+ population. We conclude that PAR1 and PAR4 are functionally expressed in large myelinated fibre neurons, and are also expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Ice flux divergence anomalies on 79north Glacier, Greenland
International audienc
- âŠ