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We consider the Burnside ring A(F) of F-stable S-sets for a 
saturated fusion system F defined on a p-group S. It is shown 
by S.P. Reeh that the monoid of F-stable sets is a free commu-
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formula that describes αP as an S-set. In the formula we use 
a combinatorial concept called broken chains which we intro-
duce to understand inverses of modified Möbius functions.
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1. Introduction

For a finite group G, the Burnside ring A(G) is defined as the Grothendieck ring of the 
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by Cartesian product. The Burnside ring A(G) is free as an abelian group, with basis 
given by isomorphism classes of transitive G-sets [G/H]. In particular the basis elements 
are in one-to-one correspondence with G-conjugacy classes of subgroups of G.

One often studies the Burnside ring of a finite group G using the mark homomorphism 
Φ : A(G) → ZCl(G), where Cl(G) is the set of G-conjugacy classes of subgroups of G. 
For K ≤ G, the K’th coordinate of Φ is defined by ΦK(X) = |XK | when X is a G-set, 
extended linearly for the rest of A(G). The ring A∗(G) := ZCl(G) is the ring of super class 
functions f : Cl(G) → Z with multiplication given by coordinate-wise multiplication. 
It is called the ghost ring of G and it plays an important role for explaining G-sets 
using their fixed point data. In particular, it is shown that the mark homomorphism 
is an injective map with a finite cokernel. This means that using rational coefficients, 
one can express the idempotent basis of A∗(G) in terms of basis elements [G/H] (see 
D. Gluck [6]).

Given a saturated fusion system F on a p-group S, one can define the Burnside ring 
A(F) of the fusion system F as a subring of A(S) formed by elements X ∈ A(S) such 
that ΦP (X) = Φϕ(P )(X) for every morphism ϕ : P → S in F . This subring is also the 
Grothendieck ring of F-stable S-sets (see (2.3) for a definition). It is proved by S.P. Reeh 
[10] that the monoid of F-stable S-sets is a free commutative monoid with a canonical 
basis satisfying certain properties. Our primary interest is to identify the elements of 
this basis, so we describe it in more detail here.

For every X ∈ A(S), let cQ(X) denote the number of [S/Q]-orbits in X so that 
X =

∑
cQ(X)[S/Q], where the sum is taken over the set of S-conjugacy classes of 

subgroups of S. For each F-conjugacy class of subgroups P of S, there is a unique (up 
to S-isomorphism) F-stable set αP satisfying

(i) cQ(αP ) = 1 if Q is fully normalized and F-conjugate to P ,
(ii) cQ(αP ) = 0 if Q is fully normalized and not F-conjugate to P .

The set {αP } over all F-conjugacy classes of subgroups form an (additive) basis for A(F)
(see Proposition 2.2).

The main purpose of this paper is to give explicit formulas for the number of fixed 
points |(αP )Q| and for the coefficients cQ(αP ) of [S/Q]-orbits, for the basis element αP . 
Our first observation is that the matrix of fixed points FMarkQ,P = |(αP )Q| can 
be described using a simple algorithm in linear algebra. We now explain this algo-
rithm.

Let Möb = Mark−1 denote the inverse matrix of the usual table of marks for S. For 
each F-conjugacy class of subgroups of S, take the sum of the corresponding columns 
of Möb, obtaining a non-square matrix. Then, from the set of rows corresponding to 
an F-conjugacy class, select one representing a fully F-normalized subgroup; delete 
the others. The resulting matrix FMöb is a square matrix with dimension equal to the 
number of F-conjugacy classes of subgroups. Then we observe that the inverse matrix 
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FMark := FMöb−1 is the matrix of marks for A(F). In other words, we prove the 
following:

Theorem 1.1. Let F be a saturated fusion system over a finite p-group S. Let the 
square matrix FMöb be constructed as above, with rows and columns corresponding to 
the F-conjugacy classes of subgroup in S. Then FMöb is invertible, and the inverse 
FMark := FMöb−1 is the matrix of marks for A(F), i.e.

FMarkQ∗,P∗ =
∣∣(αP∗)Q

∗ ∣∣.
Here Q∗ and P ∗ denote the chosen F-conjugacy class representatives. This theorem 

is proved as Theorem 3.1 in the paper. We also give a detailed calculation to illustrate 
this method (see Example 3.2). This is all done in Section 3.

In Section 4 we look closely at the above matrix method and analyze it using Möbius 
inversion. We observe that the entries of FMark, the table of marks for F , can be 
explained by a combinatorial formula using a concept called (tethered) broken chains 
(see Definition 4.7). This formula is proved in Theorem 4.9.

In Section 5, we prove the main theorem of the paper, which gives a formula for the 
coefficients cQ(αP ) in the linear combination αP =

∑
cQ(αP )[S/Q]. As in the case of 

fixed point orders, here also the formula is given in terms of an alternating sum of the 
number of broken chains linking Q to P (see Definition 5.1). The main theorem of the 
paper is the following:

Theorem 1.2. Let F be a saturated fusion system over a finite p-group S. Let BCF (Q, P )
denote the set of F-broken chains linking Q to P . Then the number of [S/Q]-orbits in 
each irreducible F-stable set αP , denoted cQ(αP ), can be calculated as

cQ(αP ) = |WSP
∗|

|WSQ| ·
∑

σ∈BCF (Q,P )

(−1)�(σ)

for Q, P subgroups of S, where P ∗ ∼F P is fully normalized.

In the above formula, �(σ) denotes the length of a broken chain σ = (σ0, σ1, . . . , σk)
linking Q to P defined as the integer �(σ) := k + |σ0| + · · · + |σk| (see Definition 5.1). 
This theorem is proved in Section 5 as Theorem 5.2. In Example 5.5, we illustrate how 
this combinatorial formula can be used to calculate the coefficients cQ(αP ) for some 
subgroups Q, P for the fusion system F = FD8(A6).

In Section 6, we prove some simplifications for the formula in Theorem 1.2. These sim-
plifications come from observations about broken chains and from properties of Möbius 
functions. Then in Section 7 we give an application of our main theorem to characteristic 
bisets. Since understanding the characteristic bisets was one of the motivations for this 
work, we now say a few more words about this application.
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Let S be a p-group and F be a fusion system on S as before. A characteristic biset for 
the fusion system F is an (S, S)-biset Ω satisfying certain properties (see Definition 7.1). 
These bisets were first introduced by Linckelmann and Webb, and they play an important 
role in fusion theory. One of the properties of a characteristic biset is stability under 
F-conjugation, namely for every ϕ : Q → S, the (Q, S)-bisets ϕΩ and QΩ are isomorphic. 
Since each (S, S)-biset is a left (S × S)-set, we can convert this stability condition to 
a stability condition for the fusion system F × F on the p-group S × S and consider 
characteristic bisets as elements in A(F × F).

It is shown by M. Gelvin and S.P. Reeh [5] that every characteristic biset includes a 
unique minimal characteristic biset, denoted by Ωmin. The minimal biset can be described 
as the basis element αΔ(S,id) of the fusion system A(F × F), where for a morphism 
ϕ : Q → S in F , the subgroup Δ(P, ϕ) denotes the diagonal subgroup {(ϕ(s), s) |
s ∈ P} in S × S. Now Theorem 1.2 can be used to give formulas for the coefficients 
cΔ(P,ϕ)(Ωmin). Such formulas are important for various other applications of these bisets 
(see for example [12]). Using the new interpretation of these coefficients we were able to 
give a proof for the statement that all the stabilizers Δ(P, ϕ) appearing in Ωmin must 
satisfy P ≥ Op(F) where Op(F) denotes the largest normal p-subgroup of F . This was 
originally proved in [5, Proposition 9.11], the proof we give in Proposition 7.3 uses broken 
chains and is much simpler.

2. Burnside rings for groups and fusion systems

In this section we recall the Burnside ring of a finite group S and how to describe its 
structure in terms of the homomorphism of marks, which embeds the Burnside ring into 
a suitable ghost ring. We also recall the Burnside ring of a saturated fusion system F on 
a p-group S, in the sense of [10].

Let S be a finite group. We use the letter S instead of G for a finite group since in all 
the applications of these results the group S will be a p-group. The isomorphism classes 
of finite S-sets form a semiring with disjoint union as addition and Cartesian product 
as multiplication. The Burnside ring of S, denoted A(S), is then defined as the additive 
Grothendieck group of this semiring, and A(S) inherits the multiplication as well. Given 
a finite S-set X, we let [X] denote the isomorphism class of X as an element of A(S). 
The isomorphism classes [S/P ] of transitive S-sets form an additive basis for A(S), and 
two transitive sets S/P and S/Q are isomorphic if and only if the subgroups P and Q
are conjugate in S.

For each element X ∈ A(S) we define cP (X), with P ≤ S, to be the coefficients when 
we write X as a linear combination of the basis elements [S/P ] in A(S), i.e.

X =
∑

[P ]∈Cl(S)

cP (X) · [S/P ],

where Cl(S) denotes the set of S-conjugacy classes of subgroup in S. The resulting maps 
cP : A(S) → Z are group homomorphisms, but they are not ring homomorphisms.
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To describe the multiplication of A(S), it is enough to know the products of basis 
elements [S/P ] and [S/Q]. By taking the Cartesian product (S/P ) × (S/Q) and consid-
ering how it breaks into orbits, one reaches the following double coset formula for the 
multiplication in A(S):

[S/P ] · [S/Q] =
∑

s∈P\S/Q

[
S/(P ∩ sQ)

]
, (2.1)

where P\S/Q is the set of double cosets PsQ with s ∈ S.
Instead of counting orbits, an alternative way of characterizing a finite S-set is count-

ing the fixed points for each subgroup P ≤ S. For every P ≤ S and S-set X, we denote 
the number of P -fixed points by ΦP (X) := |XP |. This number only depends on P up to 
S-conjugation. Since we have

∣∣(X � Y )P
∣∣ =

∣∣XP
∣∣ +

∣∣Y P
∣∣ and

∣∣(X × Y )P
∣∣ =

∣∣XP
∣∣ · ∣∣Y P

∣∣
for all S-sets X and Y , the fixed point map ΦP for S-sets extends to a ring homomorphism 
ΦP : A(S) → Z. On the basis elements [S/P ], the number of fixed points is given by

ΦQ

(
[S/P ]

)
=

∣∣(S/P )Q
∣∣ = |NS(Q,P )|

|P | , (2.2)

where NS(Q, P ) = {s ∈ S | sQ ≤ P} is the transporter in S from Q to P . In particular, 
ΦQ([S/P ]) 	= 0 if and only if Q �S P (Q is subconjugate to P ).

We have one fixed point homomorphism ΦP per conjugacy class of subgroups in S, 
and we combine them into the homomorphism of marks

Φ = ΦS : A(S)
∏

[P ] ΦP−−−−−→
∏

[P ]∈Cl(S)

Z.

This ring homomorphism maps A(S) into the product ring A∗(S) :=
∏

[P ]∈Cl(S) Z, the 
so-called ghost ring for the Burnside ring A(S).

We think of the elements in the ghost ring A∗(S) as superclass functions Cl(S) → Z

defined on the subgroups of S and constant on every S-conjugacy class. For an element 
ξ ∈ A∗(S) we write ξ(Q), with Q ≤ S, to denote the value of the class function ξ on the 
S-conjugacy class of Q. We think of ξ(Q) as the number of Q-fixed points for ξ, even 
though ξ might not be the fixed point vector for an actual element of A(S). The ghost 
ring A∗(S) has a natural basis consisting of eP for each [P ] ∈ Cl(S), where eP is the 
class function with value 1 on the class [P ], and 0 on all the other classes. The elements 
{eP | [P ] ∈ Cl(S)} are the primitive idempotents of A∗(S).

Results by tom Dieck and others show that the mark homomorphism is injective, but 
not every ξ ∈ A∗(S) is the fixed point vector for an element of A(S). The cokernel of Φ
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contains the obstruction to ξ being the fixed point vector of a (virtual) S-set, hence we 
speak of this cokernel as the obstruction group Obs(S) :=

∏
[P ]∈Cl(S)(Z/|WSP |Z), where 

WSP := NSP/P . These statements are combined in the following proposition, the proof 
of which can be found in [2, Chapter 1], [3], and [13].

Proposition 2.1. Let Ψ = ΨS : A∗(S) → Obs(S) be given by the [P ]-coordinate functions

ΨP (ξ) :=
∑

s∈WSP

ξ
(
〈s〉P

) (
mod |WSP |

)
.

Then, the following sequence of abelian groups is exact:

0 → A(S) Φ−→ A∗(S) Ψ−→ Obs(S) → 0.

Note that in the exact sequence above Φ is a ring homomorphism, but Ψ is just a 
group homomorphism.

2.1. The Burnside ring of a saturated fusion system

Let S be a finite p-group, and suppose that F is a saturated fusion system on S (see [1]
for necessary definitions on fusion systems). We say that a finite S-set is F-stable if the 
action is unchanged up to isomorphism whenever we act through morphisms of F . More 
precisely, if P ≤ S is a subgroup and ϕ : P → S is a homomorphism in F , we can 
consider X as a P -set by using ϕ to define the action g.x := ϕ(g)x for g ∈ P . We denote 
the resulting P -set by P,ϕX. In particular when incl : P → S is the inclusion map, 
P,inclX has the usual restriction of the S-action to P .

Restricting the action of S-sets along ϕ extends to a ring homomorphism rϕ : A(S) →
A(P ), and we let P,ϕX denote the image rϕ(X) for all elements X ∈ A(S). We say that 
an element X ∈ A(S) is F-stable if it satisfies

P,ϕX = P,inclX inside A(P ), for all P ≤ S and

homomorphisms ϕ : P → S in F . (2.3)

The F-stability condition originally came from considering action maps S → ΣX into 
the symmetric group on X that are maps of fusion systems F → FΣX

.
Alternatively, one can characterize F-stability in terms of fixed points and the mark 

homomorphism, and the following three properties are equivalent for all X ∈ A(S):

(i) X is F-stable.
(ii) ΦP (X) = ΦϕP (X) for all ϕ ∈ F(P, S) and P ≤ S.
(iii) ΦP (X) = ΦQ(X) for all pairs P, Q ≤ S with P ∼F Q.
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A proof of this claim can be found in [4, Proposition 3.2.3] or [10]. We shall primarily 
use (ii) and (iii) to characterize F-stability.

It follows from property (iii) that the F-stable elements form a subring of A(S). We 
define the Burnside ring of F to be the subring A(F) ⊆ A(S) consisting of all the 
F-stable elements. Equivalently, we can consider the actual S-sets that are F-stable: 
The F-stable sets form a semiring, and we define A(F) to be the Grothendieck group 
hereof. These two constructions give rise to the same ring A(F) – see [10].

According to [10], every F-stable S-set decomposes uniquely (up to S-isomorphism) 
as a disjoint union of irreducible F-stable sets, where the irreducible F-stable sets are 
those that cannot be written as disjoint unions of smaller F-stable sets. Each irreducible 
F-stable set corresponds to an F-conjugacy class [P ]F = {Q ≤ S | Q is isomorphic to P

in F} of subgroups, and they satisfy the following characterization:

Proposition 2.2. (See [10, Proposition 4.8 and Theorem A].) Let F be a saturated fusion 
system over S. For each conjugacy class in F of subgroups [P ]F there is a unique (up to 
S-isomorphism) F-stable set αP satisfying

(i) cQ(αP ) = 1 if Q is fully normalized and F-conjugate to P ,
(ii) cQ(αP ) = 0 if Q is fully normalized and not F-conjugate to P .

The sets αP form an additive basis for the monoid of all F-stable S-sets. In addition, by 
construction in [10] the stabilizer of any point in αP is F-conjugate to a subgroup of P .

3. Fixed point orders of the irreducible F -stable sets

Let Mark be the matrix of marks for the Burnside ring of S, i.e. the matrix for the 
mark homomorphism Φ : A(S) → A∗(S) with entries

MarkQ,P =
∣∣(S/P )Q

∣∣ = |NS(Q,P )|
|P | .

The rows and columns of Mark correspond to the S-conjugacy classes [P ]S ∈ Cl(S) of 
subgroups in S. We order the subgroup classes by increasing order of the subgroups, 
in particular the trivial group 1 corresponds to the first row and column, and S itself 
corresponds to the last row and column. This way Mark becomes upper triangular.

Over the rational numbers the mark homomorphism Φ : A(S) ⊗Q 
∼=−→ A∗(S) ⊗Q is 

an isomorphism, and we let Möb = Mark−1 be the inverse rational matrix.
From Möb we construct a further matrix FMöb as follows: For each F-conjugacy class 

of subgroups in S we take the sum of the corresponding columns of Möb to be the 
columns of FMöb. For each F-conjugacy class of subgroups we choose a fully normalized 
representative of the class, and then we delete all rows that do not correspond to one 
of the chosen representatives. The resulting matrix FMöb is guaranteed to be a square 
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matrix with dimension equal to the number of F-conjugacy classes of subgroups; the 
rows and columns correspond to the chosen representatives of the F-conjugacy classes 
(see Example 3.2).

For each class [P ]F let P ∗ be the chosen representative. The precise description of the 
entries FMöbQ∗,P∗ in terms of MöbQ,P is then

FMöbQ∗,P∗ :=
∑

[P ]S⊆[P∗]F

MöbQ∗,P .

Theorem 3.1. Let F be a saturated fusion system over a finite p-group S. Let the 
square matrix FMöb be constructed as above, with rows and columns corresponding to 
the F-conjugacy classes of subgroup in S. Then FMöb is invertible, and the inverse 
FMark := FMöb−1 is the matrix of marks for A(F), i.e.

FMarkQ∗,P∗ =
∣∣(αP∗)Q

∗ ∣∣.
Proof. In the rational ghost ring A∗(S) ⊗Q =

∏
[P ]S Q the unit vector eP is the superclass 

function with value 1 for the class [P ] and value 0 for the other subgroup classes. We have 
one unit vector eP corresponding to each conjugacy class [P ]S, and the matrix of marks 
Mark expresses the usual basis for A(S) ⊗Q, consisting of the transitive sets [S/P ], in 
terms of the idempotents eP . Conversely, the inverse Möb = Mark−1 then expresses the 
idempotents eP as (rational) linear combinations of the orbits [S/P ].

An element X ∈ A(S) ⊗Q is F-stable if the number of fixed points |XQ| and |XP | are 
the same for F-conjugate subgroups Q ∼F P , i.e. if the coefficients of X with respect 
to the idempotents eQ and eP are the same for F-conjugate subgroups. The F-stable 
elements of A∗(F) ⊗Q ≤ A∗(S) ⊗Q thus have an idempotent basis consisting of

eFP :=
∑

[P ′]S⊆[P ]F

eP ′ ,

with a primitive F-stable idempotent eFP corresponding to each F-conjugacy class of 
subgroups. To express the idempotent eFP as a linear combination of orbits [S/P ], we 
just have to take the sum of the columns in Möb associated to the conjugacy class [P ]F . 
Hence counting the number of [S/Q]-orbits in eFP , we get

cQ
(
eFP

)
=

∑
[P ′]S⊆[P ]F

MöbQ,P ′ .

Let P∗ denote the set of chosen fully normalized representatives for each F-conjugacy 
class of subgroups in S. For each P ∗ ∈ P∗, we have an irreducible F-stable set αP∗ , and 
by Proposition 2.2 any linear combination X of the {αP∗} can be determined solely by 
counting the number of [S/P ∗]-orbits for each P ∗ ∈ P∗.

Because eFP is F-stable, it is a (rational) linear combination of the {αQ∗}. The co-
efficients of this linear combination, coincide with the number of [S/Q∗]-orbits, so to 
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express the idempotents eFP in terms of the {αQ∗} we only care about the rows of Möb
corresponding to Q∗ ∈ P∗, and ignore all the other rows. Consequently, FMöb is the 
matrix that expresses the idempotents eFP in terms of the {αQ∗}.

The inverse FMark = FMöb−1 therefore expresses the irreducible F-stable sets αP

in terms of the F-stable idempotents eFQ, which exactly reduces to counting the Q-fixed 
points of αP . �
Example 3.2. Let S = D8 be the dihedral group of order 8 and F = FD8(A6) denote the 
fusion system induced by the finite group A6. Let P be the entire subgroup poset of D8

and P/F the poset of F-conjugacy classes of subgroups in D8:

P P/F

D8 [D8]

V 1
4 C4 V 2

4 [V 1
4 ] [C4] [V 2

4 ]

C1
2 C1

2
′

F
Z C2

2
′

F
C2

2 [Z]

1 [1]

where V ∗
4 is an elementary abelian 2-group of order 4, C∗

n is a cyclic group of order n, 
Z ∼= C2 is the centre of D8, and square brackets denote the F-conjugacy class. The 
horizontal squiggly lines indicate subgroups’ being in the same D8-conjugacy class and 
dashed lines means that they are in the same F-conjugacy class.

The table of marks Mark and its inverse Möb = Mark−1 are given below

Mark 1 C1
2 Z C2

2 V 1
4 C4 V 2

4 D8

1 8 4 4 4 2 2 2 1
C1

2 2 0 0 2 0 0 1
Z 4 0 2 2 2 1
C2

2 2 0 0 2 1
V 1

4 2 0 0 1
C4 2 0 1
V 2

4 2 1
D 1
8
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Möb 1 C1
2 Z C2

2 V 1
4 C4 V 2

4 D8

1 1/8 −1/4 −1/8 −1/4 1/4 0 1/4 0
C1

2 1/2 0 0 −1/2 0 0 0
Z 1/4 0 −1/4 −1/4 −1/4 1/2
C2

2 1/2 0 0 −1/2 0
V 1

4 1/2 0 0 −1/2
C4 1/2 0 −1/2
V 2

4 1/2 −1/2
D8 1

Below we give the matrix for FMöb and its inverse FMark = FMöb−1. Recall that the 
matrix for FMöb is obtained by adding the columns of Möb for the subgroups which are 
F-conjugate, and then by choosing a fully normalized subgroup in every F-conjugacy 
class on the rows. Here Z is the unique fully normalized subgroup in its F-conjugacy 
class.

FMöb 1 Z V 1
4 C4 V 2

4 D8

1 1/8 −5/8 1/4 0 1/4 0
Z 1/4 −1/4 −1/4 −1/4 1/2
V 1

4 1/2 0 0 −1/2
C4 1/2 0 −1/2
V 2

4 1/2 −1/2
D8 1

FMark 1 Z V 1
4 C4 V 2

4 D8

1 8 20 6 10 6 1
Z 4 2 2 2 1
V 1

4 2 0 0 1
C4 2 0 1
V 2

4 2 1
D8 1

From this we obtain the Φ(αP ) by reading off the columns of FMark (since eFZ =
eC1

2
+ eZ + eC2

2
):

Φ(α1) = 8eF1 = 8e1

Φ(αZ) = 20eF1 + 4eFZ = 20e1 + 4eC1
2

+ 4eZ + 4eC2
2

Φ(αV 1
4
) = 6eF1 + 2eFZ + 2eF

V 1
4

= 6e1 + 2eC1
2

+ 2eZ + 2eC2
2

+ 2eV 1
4

Φ(αC4) = 10eF1 + 2eFZ + 2eFC4
= 10e1 + 2eC1

2
+ 2eZ + 2eC2

2
+ eC4

Φ(αV 2
4
) = 6eF1 + 2eFZ + 2eF

V 2
4

= 6e1 + 2eC1
2

+ 2eZ + 2eC2
2

+ 2eV 2
4

Φ(αD8) = eF1 + eFZ + eF
V 1

4
= e1 + eC1

2
+ eZ + eC2

2

+ eF + eF2 + eF + e 1 + eC + e 2 + eD
C4 V4 D8 V4 4 V4 8
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Finally, applying the matrix Möb to each of these fixed point vectors yields the S-orbit 
description of the αP :

α1 = [S/1]

αZ = [S/Z] + 2
[
S/C1

2
]
+ 2

[
S/C2

2
]

αV 1
4

=
[
S/V 1

4
]
+
[
S/C2

2
]

αC4 = [S/C4] +
[
S/C1

2
]
+

[
S/C2

2
]

αV 2
4

=
[
S/V 2

4
]
+
[
S/C1

2
]

αD8 = [S/D8]

There is an explicit formula for expressing the idempotent basis {eQ} in terms of the 
transitive S-set basis {[S/P ]} using the combinatorics of the subgroup poset, which is 
often referred as the Gluck’s idempotent formula [6]. In the following two sections we 
find similar explicit formulas for the coefficients of αP∗ with respect to the idempotent 
basis {eQ} and then with respect to the S-set basis {[S/P ]}. For this we need to look at 
the Möbius inversion in Gluck’s idempotent formula more closely.

4. Fixed point orders and Möbius inversion

In this section we discuss how a more explicit formula can be obtained for fixed point 
orders of basis elements using Möbius inversion. We first introduce basic definitions about 
Möbius inversion. For more details, we refer the reader to [11].

Let P be a finite poset. The incidence function of P is defined as the function

ζP : P × P → Z : (a, b) �→
{

1 a ≤ b,

0 else.

The incidence matrix of P is the |P| × |P|-matrix (ζP) with entries (ζP)a,b = ζP(a, b). 
When labelling the rows/columns we respect the partial order of P, such that a ≤ b in 
P implies that the a-row/-column precedes the b-row/-column. This way the incidence 
matrix is always upper unitriangular (an upper triangular matrix with all diagonal entries 
equal to 1).

Definition 4.1. The Möbius function for a poset P is μP : P × P → Q defined by
∑
a∈P

ζP(x, a)μP(a, y) = δx,y =
∑
a∈P

μP(x, a)ζP(a, y)

for all x, y ∈ P. If the corresponding |P| × |P| Möbius matrix is (μP), we have (μP) =
(ζP)−1.

Lemma 4.2. μP(a, b) ∈ Z for all a, b ∈ P.
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Proof. By our labelling convention, (ζP) is upper unitriangular. Therefore we can write 
(ζP) = I + (ηP), where (ηP)i,j = 1 when ai < aj and vanishes elsewhere. Then ηP is 
strictly upper triangular, and (ηP)|P| = 0, so

(μP) = (ζP)−1 =
(
I + (ηP)

)−1

= I − (ηP) + (ηP)2 − (ηP)3 + . . . + (−1)|P|−1(ηP)|P|−1

has all integral entries. �
Each of the matrices (ηkP) := (ηP)k has an interpretation in terms of chains in the 

poset P.

Definition 4.3. A chain of length k in P is a totally ordered subset of k + 1 elements 
σ = {a0 < a1 < . . . < ak}. Such a chain links a0 to ak.

Let Ck
P(a, b) be the set of chains of length k linking a to b, and Ck

P the set of all chains 
of length k in P. C0

P is the set of elements of P. Similarly, let CP(a, b) be the set of all 
chains linking a to b, CP the set of all chains in P, and for any chain σ ∈ CP let |σ|
denote the length of σ.

Lemma 4.4. (ηkP)a,b = |Ck
P(a, b)|.

Proof. With a0 := a and ak := b, the definition of matrix multiplication gives us

(
ηkP

)
a0,ak

=
∑

a1,...,ak−1∈P
ηP(a0, a1) · ηP(a1, a2) · · · ηP(ak−1, ak).

By definition of the incidence function ηP , each factor ηP(ai, ai+1) is 1 if ai < ai+1 and 
zero otherwise. The product ηP(a0, a1) · · · ηP(ak−1, ak) is therefore nonzero and equal 
to 1 precisely when a0 < a1 < · · · < ak is a k-chain in P linking a0 to ak. �
Proposition 4.5. For all a, b ∈ P,

μP(a, b) =
∞∑
k=0

(−1)k
∣∣Ck

P(a, b)
∣∣ =

∑
σ∈CP (a,b)

(−1)|σ|.

Proof. Immediate from Lemmas 4.2 and 4.4 and their proofs. �
Remark 4.6. From the formula above it is clear that the Möbius function can be expressed 
as the reduced Euler characteristic of a subposet in P. More specifically, for a < b, let 
(a, b)P denote the poset of all c ∈ P with a < c < b. Then μP(a, b) is equal to the 
reduced Euler characteristic χ̃((a, b)P) of the subposet (a, b)P for every a, b ∈ P such 
that a < b.
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4.1. Möbius functions and fixed points

On the next few pages we go through the construction of the matrix FMark in The-
orem 3.1 again, but this time we follow the calculations in detail using the framework 
of incidence and Möbius functions. For a finite p-group S, we let P be the poset of sub-
groups ordered by inclusion. This poset has incidence and Möbius functions ζP and μP
as described in the previous section, denoted thereafter by ζ, respectively μ.

The matrix of marks Mark for the Burnside ring of S has entries Mark [Q],[P ] =
|NS(Q, P )|/|P | defined for pairs ([Q], [P ]) of S-conjugacy classes of subgroups in S. 
Each column is divisible by the diagonal entry, which is the order of the Weyl group 
WSP = NSP/P . If we divide the [P ]S-column by |WSP |, we get

Mark [Q],[P ] ·
1

|WSP | = |NS(Q,P )|
|NSP | = |{s ∈ S | sQ ≤ P}|

|NSP | = |{s ∈ S | Q ≤ P s}|
|NSP |

=
∣∣{P ′ ≤ S

∣∣ P ′ ∼S P and Q ≤ P ′}∣∣ =
∑

P ′∼SP

ζ
(
Q,P ′).

We denote this value by ζ̃S([Q], [P ]), and we call ζ̃S the modified incidence function
for the S-conjugacy classes of subgroups. We have (ζ̃S)[Q],[P ] = Mark [Q],[P ] /|WSP |, so 
the modified incidence matrix (ζ̃S) is upper unitriangular (see Example 4.10 for the 
computations in the case S = D8).

Inverting the matrix (ζ̃S), we define (μ̃S) := (ζ̃S)−1 which gives rise to a modified 
Möbius function μ̃S for S-conjugacy classes of subgroups. Since Möb = Mark−1 is the 
inverse of the matrix of marks, we have (μ̃S)[Q],[P ] = |WSQ| ·MöbQ,P . As (ζ̃S) is triangular 
with diagonal entries 1, we also have (μ̃S) = (ζ̃S)−1 =

∑∞
k=0(−1)k · ((ζ̃S) − I)k as in the 

proof of Lemma 4.2, which we use to calculate the entries of (μ̃S):

μ̃S

(
[Q], [P ]

)
=

∞∑
k=0

(−1)k ·
(
(ζ̃S) − I

)k
=

∑
([R0],[R1],...,[Rk])∈TS

(−1)k ζ̃S
(
[R0], [R1]

)
· · · ζ̃S

(
[Rk−1], [Rk]

)

where TS consists of all tuples ([R0], [R1], . . . , [Rk]), for k ≥ 0, of S-conjugacy classes of 
subgroups [Ri] ∈ Cl(S) such that [R0] = [Q], [Rk] = [P ], and |R0| < |R1| < · · · < |Rk|. 
Since we have

ζ̃S
(
[Ri], [Rj ]

)
=

∑
R′

j∼SRj

ζ
(
Ri, R

′
j

)

for all i, j, we obtain that μ̃S([Q], [P ]) is equal to the sum
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∑
([R0],[R1],...,[Rk])∈TS

R0=Q

∑
R′

1∼SR1

(−1)kζ
(
R0, R

′
1
)
ζ̃S

([
R′

1
]
, [R2]

)
· · · ζ̃S

(
[Rk−1], [Rk]

)
...

=
∑

([R0],[R1],...,[Rk])∈TS

R0=Q

∑
R′

1∼SR1

∑
R′

2∼SR2

· · ·

×
∑

R′
k∼SRk

(−1)kζ
(
R0, R

′
1
)
ζ
(
R′

1, R
′
2
)
· · · ζ

(
R′

k−1, R
′
k

)

=
∑

R0<R′
1<···<R′

k

s.t. R0=Q, R′
k∼SP

(−1)k =
∑

P ′∼SP

∞∑
k=0

(−1)k
∣∣Ck

P
(
Q,P ′)∣∣ =

∑
P ′∼SP

μ
(
Q,P ′).

Therefore, the matrix Möb, the inverse of the matrix of marks, has entries

Möb[Q],[P ] = 1
|WSQ| μ̃S

(
[Q], [P ]

)
= 1

|WSQ|
∑

P ′∼SP

μ
(
Q,P ′).

This concludes the part of our investigation concerning only the subgroup structure of S, 
and for the calculations below we include the extra data of a saturated fusion system F
on S.

In order to determine the number of fixed points |(αP )Q| as in Theorem 3.1, we 
wish to calculate the F-analogs of Mark and Möb above. To do this, we first choose a 
fully normalized representative P ∗ for each F-conjugacy class [P ]F of subgroups, and as 
before let P∗ be the collection of these representatives. Recall that the matrix FMöb is 
constructed from Möb by picking out the rows corresponding to Q∗ ∈ P∗, and the column 
in FMöb corresponding to P ∗ ∈ P∗ is the sum of the columns in Möb corresponding to 
[P ]S with P ∼F P ∗. More explicitly, we have

FMöbQ∗,P∗ :=
∑

[P ]S⊆[P∗]F

Möb[Q∗],[P ] = 1
|WSQ∗|

∑
P∼FP∗

μ
(
Q∗, P

)
.

We define the modified Möbius function μ̃F : P∗ × P∗ → Z for the (representatives of) 
F-conjugacy classes of subgroups, to be

μ̃F
(
Q∗, P ∗) :=

∣∣WSQ
∗∣∣ · FMöbQ∗,P∗ =

∑
P∼FP∗

μ
(
Q∗, P

)
,

summing the usual Möbius function. The associated matrix (μ̃F) is then upper unitri-
angular.

The modified incidence matrix for F is defined as the inverse (ζ̃F ) := (μ̃F )−1, with 
the associated function ζ̃F : P∗ × P∗ → Z. By Theorem 3.1 we then have

∣∣(αP )Q
∣∣ = FMarkQ∗,P∗ =

∣∣WSP
∗∣∣ · ζ̃F(Q∗, P ∗)
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where FMark := FMöb−1. Recall that for each subgroup R ≤ S, we denote by R∗ the 
chosen fully normalized representative for the F-conjugacy class of R. As previously, the 
fact that (μ̃F ) is unitriangular implies

ζ̃F
(
Q∗, P ∗) =

∞∑
k=0

(−1)k ·
(
(μ̃F ) − I

)k
=

∑
(R∗

0 ,R
∗
1 ,...,R

∗
k)∈TF

(−1)kμ̃F
(
R∗

0, R
∗
1
)
· · · μ̃F

(
R∗

k−1, R
∗
k

)

where TF consists of all tuples (R∗
0, R

∗
1, . . . , R

∗
k), for all k ≥ 0, of F-conjugacy class 

representatives R∗
i ∈ P∗ such that R∗

0 = Q∗, R∗
k = P ∗, and |R∗

0| < |R∗
1| < · · · < |R∗

k|. 
Since we have

μ̃F
(
R∗

i , R
∗
j

)
=

∑
Rj∼FR∗

j

μ
(
R∗

i , Rj

)
,

for all R∗
i , R

∗
j ∈ P∗, we obtain that

ζ̃F (Q∗, P ∗) =
∑

(R∗
0 ,R

∗
1 ,...,R

∗
k)∈TF

∑
R1∼FR∗

1

(−1)kμ
(
R∗

0, R1
)
μ̃F

(
R∗

1, R
∗
2
)
· · · μ̃F

(
R∗

k−1, R
∗
k

)
...

=
∑

(R∗
0 ,R

∗
1 ,...,R

∗
k)∈TF ,

R1,...,Rk∈P s.t. Ri∼FR∗
i

(−1)kμ
(
R∗

0, R1
)
μ
(
R∗

1, R2
)
· · ·μ

(
R∗

k−1, Rk

)

=
∑

(R∗
0 ,R

∗
1 ,...,R

∗
k)∈TF ,

R1,...,Rk∈P s.t. Ri∼FR∗
i

∑
σi∈CP(R∗

i−1,Ri)
for 1≤i≤k

(−1)k+|σ1|+···+|σk|. (4.1)

To calculate ζ̃F (Q∗, P ∗) we hence have to count sequences of chains (σ1, . . . , σk) such 
that the end Ri of σi is F-conjugate to the start R∗

i of σi+1, and the first chain σ1 has 
to start at Q∗ while the final chain σk only has to end at P ∗ up to F-conjugation. We 
give these sequences a name:

Definition 4.7. A tethered F-broken chain in P linking Q∗ ∈ P∗ to P ∈ P is a sequence of 
chains (σ1, . . . , σk) in P subject to the following requirements. With each chain written 
as σi = (ai0, . . . , aini

) they must satisfy

• aini
∼F ai+1

0 for all 1 ≤ i ≤ k − 1, so the endpoints of the chains fit together up to 
conjugation in F .

• ai0 ∈ P∗ for all 1 ≤ i ≤ k. Every chain starts at one of the chosen representatives.
• |σi| = ni > 0, for all 1 ≤ i ≤ k.
• a1

0 = Q∗ and akn ∼F P .

k
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If Q∗ ∼F P , we allow the trivial broken chain with k = 0. Let tBCF (Q∗, P ) be the set 
of tethered F-broken chains linking Q∗ to P . The total length of a tethered broken chain 
σ = (σ1, . . . , σk) is defined to be

�(σ) := k + |σ1| + · · · + |σk|.

We visualize a tethered broken chain as a zigzag diagram in the following way:

a1
0 · · · a1

n1

a2
0 · · · a2

n2

. . .

ak0 · · · aknk

< <

∼

< <
∼

∼

< <

The total length of the tethered broken chain is then the total number of < and ∼ signs 
plus 1. The added 1 can be viewed as an additional hidden Q ∼F Q∗ in front of the 
broken chain, and this interpretation matches the description, in Remark 5.3 below, of 
tethered broken chains as a special case of the broken chains defined in Section 5.

With the terminology of tethered broken chains, the calculations above translate to 
the following statements:

Proposition 4.8. The modified incidence function ζ̃F for a saturated fusion system F , 
can be calculated as

ζ̃F
(
Q∗, P ∗) =

∑
σ∈tBCF (Q∗,P∗)

(−1)�(σ) =
∑

(σ1,...,σk)∈tBCF (Q∗,P∗)

(−1)k+|σ1|+···+|σk|

for all fully normalized representatives Q∗, P ∗ ∈ P∗.

We now state the main result of this section.

Theorem 4.9. Let F be a saturated fusion system over a finite p-group S, and let P∗ be a 
set of fully normalized representatives for the F-conjugacy classes of subgroups in S. Let 
tBCF (Q∗, P ∗) denote the set of all tethered F-broken chains linking Q∗ to P ∗. Then the 
numbers of fixed points for the irreducible F-stable sets αP∗, P ∗ ∈ P∗, can be calculated 
as

∣∣(αP∗)Q
∗∣∣ =

∣∣WSP
∗∣∣ · ∑

σ∈tBCF (Q∗,P∗)

(−1)�(σ)

for Q∗, P ∗ ∈ P∗.
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Proof. Immediate from the proposition since |(αP∗)Q∗ | = |WSP
∗| · ζ̃F (Q∗, P ∗). �

Example 4.10. Let S = D8 and F = FS(A6) as before. The incidence matrix ζP and the 
Möbius matrix μP are given as follows.

ζP 1 C1
2 C1

2
′
Z C2

2
′
C2

2 V 1
4 C4 V 2

4 D8

1 1 1 1 1 1 1 1 1 1 1
C1

2 1 1 1
C1

2
′ 1 1 1

Z 1 1 1 1 1
C2

2
′ 1 1 1

C2
2 1 1 1

V 1
4 1 1

C4 1 1
V 2

4 1 1
D8 1

μP 1 C1
2 C1

2
′

Z C2
2
′
C2

2 V 1
4 C4 V 2

4 D8

1 1 −1 −1 −1 −1 −1 2 0 2 0
C1

2 1 −1 0
C1

2
′ 1 −1 0

Z 1 −1 −1 −1 2
C2

2
′ 1 −1 0

C2
2 1 −1 0

V 1
4 1 −1

C4 1 −1
V 2

4 1 −1
D8 1

Below we see the matrices for μ̃S and ζ̃S obtained by summing over the columns of 
subgroups belonging to the same S-conjugacy class and choosing an S-conjugacy class 
representative on the rows.

μ̃S 1 C1
2 Z C2

2 V 1
4 C4 V 2

4 D8

1 1 −2 −1 −2 2 0 2 0
C1

2 1 0 0 −1 0 0 0
Z 1 0 −1 −1 −1 2
C2

2 1 0 0 −1 0
V 1

4 1 0 0 −1
C4 1 0 −1
V 2

4 1 −1
D 1

ζ̃S 1 C1
2 Z C2

2 V 1
4 C4 V 2

4 D8

1 1 2 1 2 1 1 1 1
C1

2 1 0 0 1 0 0 1
Z 1 0 1 1 1 1
C2

2 1 0 0 1 1
V 1

4 1 0 0 1
C4 1 0 1
V 2

4 1 1
D 1
8 8
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WD8 1 C1
2 Z C2

2 V 1
4 C4 V 2

4 D8

1 8
C1

2 2
Z 4
C2

2 2
V 1

4 2
C4 2
V 2

4 2
D8 1

mD8 1 C1
2 Z C2

2 V 1
4 C4 V 2

4 D8

1 8 4 4 4 2 2 2 1
C1

2 2 0 0 2 0 0 1
Z 4 0 2 2 2 1
C2

2 2 0 0 2 1
V 1

4 2 0 0 1
C4 2 0 1
V 2

4 2 1
D8 1

The last two matrices above are the diagonal matrix WD8 with entries (WD8)[P ],[P ] =
|WS(P )|, and the matrix mD8 = ζ̃S · WD8 which is the same as matrix of the mark 
homomorphism Mark. So we also have Möb = W−1

D8
· μ̃S .

Now let μ̃F be the matrix obtained by summing columns of μ̃S over the F conjugacy 
classes and picking fully normalized representatives for the rows. Let ζ̃F = (μ̃F )−1.

μ̃F 1 Z V 1
4 C4 V 2

4 D8

1 1 −5 2 0 2 0
Z 1 −1 −1 −1 2
V 1

4 1 0 0 −1
C4 1 0 −1
V 2

4 1 −1
D8 1

ζ̃F 1 Z V 1
4 C4 V 2

4 D8

1 1 5 3 5 3 1
Z 1 1 1 1 1
V 1

4 1 0 0 1
C4 1 0 1
V 2

4 1 1
D8 1

From the definition of FMöb, it is easy to see that FMöb = W−1
F · μ̃F and FMark =

FMöb−1 = ζ̃F · WF where WF is the diagonal matrix with entries (WF )P∗,P∗ =
|WS(P ∗)| for all P ∗ ∈ P∗. Theorem 4.9 says that we can calculate the entries of the 
matrix ζ̃F by counting the number of tethered broken chains. For example, ζ̃F(1, Z) = 5
because there are 5 tethered broken chains linking 1 to Z. We give more complicated 
examples of tethered broken chain calculations in Example 5.5.

Remark 4.11. Note that the modified incidence matrix with respect to S-conjugations 
and the modified Möbius function on S-conjugate subgroups (coming from the poset of 
subgroups) are constructed in the same way: Add the columns of S-conjugate subgroups, 
pick out any row from each class. It is interesting that performing the same operation 
on the originals of the incidence function and the Möbius inverse ends up giving you 
inverse matrices; in particular, this is not what happens for modifications with respect 
to F-conjugation which is what is done in the rest of the paper. We think that this 
shows that the S-conjugation action on the subgroup poset is more special that the 
F-conjugation action.
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5. Broken chains and the main theorem

Now that we have formulas for the number of fixed points of αP , we will determine 
how each αP decomposes into S-orbits. For every element X ∈ A(S) of the Burnside 
ring, we let cQ(X) denote the number of (virtual) [S/Q]-orbits, i.e. the coefficients of the 
linear combination X =

∑
[Q]S cQ(X) · [S/Q]. The matrix of marks Mark encodes the 

number of fixed points in terms of the number of orbits, so the numbers |XQ| form a fixed 
point vector ϕ := Mark ·(cQ(X)). Recall that Möb is the inverse of Mark. Given any fixed 
point vector ϕ, we can therefore recover the orbit decomposition as (cQ(X)) = Möb ·ϕ.

For αP we already have a formula for the number of fixed points |(αP )Q|, which we 
write in the form of

∣∣(αP )Q
∣∣ = FMarkQ∗,P∗ =

∣∣WSP
∗∣∣ · ζ̃F(Q∗, P ∗)

where ζ̃F (Q∗, P ∗) has a complicated Möbius formula given in (4.1). We also know how 
Möb is given in terms of Möbius functions. The number of [S/Q]-orbits in αP must 
therefore be

cQ(αP ) =
∑

[R]∈Cl(S)

MöbQ,R ·
∣∣(αP )R

∣∣ = 1
|WSQ|

∑
[R]∈Cl(S)

μ̃S

(
[Q], [R]

)
·
∣∣(αP∗)R

∗∣∣
= 1

|WSQ|
∑
R∈P

μ(Q,R) ·
(∣∣WSP

∗∣∣ · ζ̃F(R∗, P ∗))

= |WSP
∗|

|WSQ|
∑
R∈P

μ(Q,R)

·
∑

(R∗
0 ,R

∗
1 ,...,R

∗
k)∈TF ,

R1,...,Rk∈P s.t. Ri∼FR∗
i

(−1)kμ
(
R∗

0, R1
)
μ
(
R∗

1, R2
)
· · ·μ

(
R∗

k−1, Rk

)

where the sum is over TF of all k-tuples, for all k ≥ 0, of (prefixed) F-conjugacy class 
representatives R∗

i ∈ P∗ such that R∗
0 = R∗, R∗

k = P ∗, and |R∗
0| < |R∗

1| < · · · < |R∗
k|. 

From this we obtain that

cQ(αP )

= |WSP
∗|

|WSQ|
∑

R0,R1,...,Rk∈P
s.t. Rk∼FP∗,

|Q|≤|R0|<|R1|<···<|Rk|

(−1)kμ(Q,R0)μ
(
R∗

0, R1
)
μ
(
R∗

1, R2
)
· · ·μ

(
R∗

k−1, Rk

)

= |WSP
∗|

|WSQ|
∑

R0,R1,...,Rk∈P
s.t. Rk∼FP∗,

∑
σ0∈CP(Q,R0)

∑
σi∈CP(R∗

i−1,Ri)
for 1≤i≤k

(−1)k+|σ0|+|σ1|+···+|σk|.
|Q|≤|R0|<|R1|<···<|Rk|
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The resulting formula is very similar to the calculations for fixed points in the previous 
section, except that we have an additional (possibly trivial) chain σ0 in front. We combine 
this additional chain with the definition of tethered broken chains and arrive at the 
following definition:

Definition 5.1. An F-broken chain in P linking Q ∈ P to P ∈ P is a sequence of chains 
(σ0, σ1, . . . , σk) in P subject to the following requirements. With each chain written as 
σi = (ai0, . . . , aini

) they must satisfy

• aini
∼F ai+1

0 for all 0 ≤ i ≤ k − 1, so the endpoints of the chains fit together up to 
conjugation in F .

• ai0 ∈ P∗ for all 1 ≤ i ≤ k. Every chain except for σ0 starts at one of the chosen 
representatives.

• |σi| = ni > 0, for all 1 ≤ i ≤ k. Note that σ0 is allowed to be trivial.
• a0

0 = Q and aknk
∼F P .

As before, if Q ∼F P , we allow the trivial broken chain with k = 0 and σ0 trivial. Let 
BCF (Q, P ) be the set of F-broken chains linking Q to P . We define the total length of 
a broken chain σ = (σ0, . . . , σk) to be

�(σ) := k + |σ0| + · · · + |σk|.

To visualize a broken chain, we represent it by the diagram

a0
0 · · · a0

n0

a1
0 · · · a1

n1

. . .

ak0 · · · aknk

< <

∼

< <

∼

∼

< <

The total length of the represented broken chain is then equal to the number of < and 
∼ signs put together.

Now we state our main theorem:

Theorem 5.2. Let F be a saturated fusion system over a finite p-group S. Let BCF (Q, P )
denote the set of F-broken chains linking Q to P . Then the number of [S/Q]-orbits in 
each irreducible F-stable set αP , denoted cQ(αP ), can be calculated as
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cQ(αP ) = |WSP
∗|

|WSQ| ·
∑

σ∈BCF (Q,P )

(−1)�(σ)

for Q, P ∈ P, where P ∗ ∼F P is fully normalized.

Proof. Immediate from the argument at the beginning of the section. �
Remark 5.3. If a broken chain (σ0, σ1, . . . , σk) ∈ BCF (Q, P ) happens to have σ0 equal to 
the trivial chain, i.e. |σ0| = 0, then Q is the endpoint of σ0 so σ1 has to start at Q∗. The 
converse is also true, if σ1 starts at Q∗, then σ0 has to be trivial. In this case (σ1, . . . , σk)
is exactly the data of a tethered broken chain linking Q∗ to P .

Hence the tethered broken chains (σ1, . . . , σk) ∈ tBCF (Q∗, P ) correspond precisely to 
the broken chains (σ0, σ1, . . . , σk) ∈ BCF (Q, P ) where σ0 is the trivial chain. This way, 
in diagram form, a tethered broken chain linking Q (or rather Q∗) to P looks like

Q

Q∗ · · · a1
n1

a2
0 · · · a2

n2

. . .

ak0 · · · aknk

∼

< <

∼

< <

∼

∼

< <

with aknk
∼F P . Drawn in this form, the total length of the tethered broken chain is the 

total number of < and ∼ symbols, where the initial Q ∼ Q∗ adds the necessary +1 in 
comparison with Definition 4.7.

Theorem 4.9 can thus be reformulated as

Corollary 5.4 (Theorem 4.9 revisited). Let F be a saturated fusion system over a fi-
nite p-group S. The numbers of fixed points for each irreducible F-stable set αP can be 
calculated as

∣∣(αP )Q
∣∣ =

∣∣WSP
∗∣∣ · ∑

σ=(σ0,...,σk)∈BCF (Q,P )
|σ0|=0

(−1)�(σ)

for Q, P ∈ P, where P ∗ ∼F P is fully normalized.
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Example 5.5. Let S = D8 and F = FS(A6) as before. We showed earlier that cQ(αP ) = 1
when Q = C1

2 and P = V 2
4 . Note that in this case |WSP

∗| = |WSQ| = 2 and there is 
only one broken chain from C1

2 to V 2
4 which is

C1
2

Z V 2
4

∼

<

Note that this is also a tethered broken chain. So we have |(αP )Q| = |WSP
∗| · 1 = 2 for 

Q = C1
2 and P = V 2

4 .
If we repeat the same calculation for Q = C1

2 and P = D8, then we observe that there 
are 10 broken chains from C1

2 to D8 which are

C1
2 D8

C1
2 V 1

4 D8

<

< <

C1
2

Z D8

∼

<

C1
2 V 1

4

V 1
4 D8

<

∼

<

C1
2

Z V 1
4 D8

∼
< <

C1
2

Z C4 D8

∼

< <

C1
2

Z V 2
4 D8

∼

< <

C1
2

Z V 1
4

V 1
4 D8

∼

<

∼

<

C1
2

Z C4

C4 D8

∼

<

∼

<

C1
2

Z V 2
4

V 2
4 D8

∼

<

∼

<

If we sum the signs (−1)�(σ) over all the broken chains above, and multiply it with 
|WSP

∗|/|WSQ|, we get

cQ(αP ) = 1
2(1 − 2 + 4 − 3) = 0.

Note that if we only consider the tethered broken chains, then we obtain
∣∣(αP )Q

∣∣ =
∣∣WSP

∗∣∣(1 − 3 + 3) = 1.

Note that in the above example some of the broken chains naturally can be paired 
with each other to cancel their contributions. For example, all the broken chains on the 
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second row cancels with the broken chains on the third row. In the next section we prove 
that the broken chain calculations for calculating cQ(αP ) and |(αP )Q| can be simplified.

6. Computational simplifications

In this section, we show that certain types of broken chains can be naturally paired 
with certain other types of broken chains in such a way that their contributions in the 
summation in Theorem 5.2 cancel each other. This gives a modified version of the formula 
in Theorem 5.2 where we only consider broken chains which are not in either type. We 
start with a definition of these types.

Definition 6.1. Let σ = (σ0, . . . , σk) be a broken chain in F with σi = (ai0, . . . , aini
). Sup-

pose that a subgroup aij in the broken chain is S-conjugate to the chosen representative 
(aij)∗ ∈ P∗. We say that such an aij is a ∗-group of type 1 if 0 < j < ni, or if i = j = 0 and 
n0 > 0. We say that aij is a ∗-group of type 2 if j = ni and 0 ≤ i < k. In the remaining 
cases we either have j = 0 and i > 0, in which case aij ∈ P∗ is always required, or we 
have i = k and j = nk with aij as the very last group. In either of these last cases, aij is 
not a ∗-group.

In diagram form the two types of ∗-groups are as follows:

. . .
· · · (aij)∗ · · ·

. . .
< < or (a0

0)∗ · · ·
. . .

< (Type 1)

. . .
· · · (aij)∗

ai+1
0 · · ·

. . .

<

∼

<

or (a0
0)∗

a1
0 · · ·

. . .

∼

<

(Type 2)

If a broken chain σ contains at least one ∗-group, we say that σ is sparkling of type 1
or 2 where the type of σ is determined by the type of the smallest ∗-group in σ. A broken 
chain is drab if it has no ∗-groups at all.

Example 6.2. Consider the last calculation in Example 5.5, where Q = C1
2 and P = D8. 

The broken chains on the second row are all sparkling of type 1. More specifically in all 
these, the second chains include ∗-groups of type 1 which are V 1

4 , C4, and V 2
4 . Note also 

that the second broken chain on the first row is a sparkling broken chain of the type 1. 
The fourth chain on the first row and all the chains on the third row are sparkling broken 
chains of type 2. We will see below that these type 1 and type 2 chains can be paired 
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in an obvious way. The only drab broken chains in this example are the first and third 
broken chains on the first row.

Proposition 6.3. Let F be a saturated fusion system over a finite p-group S. In calculating 
the coefficients cQ(αP ) by Theorem 5.2, it is sufficient to consider only the drab broken 
chains:

cQ(αP ) = |WSP
∗|

|WSQ| ·
∑

σ∈BCF (Q,P )
σ is drab

(−1)�(σ)

for Q, P ∈ P, where P ∗ ∼F P is fully normalized.

Proof. By Theorem 5.2 we have

cQ(αP ) = |WSP
∗|

|WSQ| ·
∑

σ∈BCF (Q,P )

(−1)�(σ)

for Q, P ∈ P, where P ∗ ∼F P is fully normalized. For each subgroup R ≤ S we will 
consider all the sparkling broken chains that have R as their smallest ∗-group and links 
Q to P . For each R we will show that these broken chains cancel each other in the sum 
above, leaving only the drab broken chains at the end. In order for R to be a ∗-group 
at all, R must be S-conjugate to the chosen representative R∗ ∈ P∗. We can therefore 
choose an s ∈ S such that sR = R∗, and we let s be fixed for the remainder of the proof.

Let σ ∈ BCF (Q, P ) be a broken chain with R as its smallest ∗-group. Suppose σ =
(. . . , σ∗, . . .) where σ∗ is the chain containing R as a ∗-group. If R is at the end of σ∗, 
then σ is type 2, otherwise σ is type 1.

If σ is type 1, then we write σ∗ = (A0, . . . , Am−1, R, B1, . . . , Bn) where n ≥ 1. 
We can then conjugate the entire second part of the chain with s to get subgroups 
Ci := sBi. These form a chain (R∗, C1, . . . , Cn) which starts at R∗ ∈ P∗ and has 
length at least 1 (see the illustration (6.1) below). We also have Cn ∼S Bn ∼F B∗

n, 
so we can “break” σ∗ at R into two chains and get a legal broken chain σ′ :=
(. . . , (A0, . . . , Am−1, R), (R∗, C1, . . . , Cn), . . .) where we don’t change any other part of σ. 
The new broken chain σ′ is type 2 with R as its smallest ∗-group. Since σ′ has one extra 
break compared to σ, �(σ′) = �(σ) + 1.

If alternatively σ has type 2, we write σ∗ = (A0, . . . , Am−1, R) and let (R∗, C1, . . . , Cn)
be the chain of σ that follows σ∗ (such a chain exists since R is not the very last 
group of σ). We conjugate every Ci with s from the right Bi := Cs

i , and they form 
a chain (R, B1, . . . , Bn) starting at R and satisfying Bn ∼S Cn ∼F C∗

n. We can then 
combine σ∗ with the Bi-chain to get a single chain, and a new broken chain σ′ :=
(. . . , (A0, . . . , Am−1, R, B1, . . . , Bn), . . .) of type 1 with R as its smallest ∗-group. We 
also have �(σ′) = �(σ) − 1.

The two operations are inverses to each other and are illustrated below:
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. . .

A0 · · · Am−1 R B1 · · · Bn

R∗ C1 · · · Cn

. . .

∼

< < < < < <

S∼S∼

< < <
∼

S∼

Type 1

Type 2

(6.1)

Because any two corresponding broken chains have lengths that differ by 1, they cancel 
in the sum of Theorem 5.2. �

Another way to reduce the number of terms in the sum of Theorem 5.2, is to limit 
the sizes of the individual chains in a broken chain. This stems from the fact that the 
usual Möbius function for subgroups of p-groups has μ(A, B) = 0 unless B ≤ NSA with 
B/A elementary abelian (see [7, Corollary 3.5], [8, Proposition 2.4]).

Proposition 6.4. Let F be a saturated fusion system over a finite p-group S. In calculating 
the coefficients cQ(αP ) by Theorem 5.2, it is sufficient to consider only broken chains 
(σ0, . . . , σk) where every σi = (ai0, . . . , aini

) has aini
≤ NS(ai0) with aini

/ai0 elementary 
abelian. Therefore, we have

cQ(αP ) = |WSP
∗|

|WSQ| ·
∑

σ=((ai
j)

ni
j=0)

k
i=0∈BCF (Q,P ),

s.t. each ai
ni

/ai
0 is elm.ab.

(−1)�(σ)

for Q, P ∈ P, where P ∗ ∼F P is fully normalized.

Proof. In the proof of Theorem 5.2 we consider the sum

cQ(αP ) = |WSP
∗|

|WSQ|
∑

R0,R1,...,Rk∈P
s.t. Rk∼FP∗,

|Q|≤|R0|<|R1|<···<|Rk|

(−1)kμ(Q,R0)μ
(
R∗

0, R1
)
μ
(
R∗

1, R2
)
· · ·μ

(
R∗

k−1, Rk

)

A term of this sum is only nonzero if Q � R0 and Ri−1 � Ri with elementary abelian 
quotients for all i. Hence the sum reduces to

cQ(αP )

= |WSP
∗|

|WSQ|
∑

R0,R1,...,Rk∈P
s.t. Rk∼FP∗,

|Q|≤|R0|<|R1|<···<|Rk|,

(−1)kμ(Q,R0)μ
(
R∗

0, R1
)
μ
(
R∗

1, R2
)
· · ·μ

(
R∗

k−1, Rk

)

R0/Q and Ri/Ri−1 are elm.ab.
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As in the proof of Theorem 5.2 we then replace each product of Möbius functions by 
broken chains and arrive at the formula in the proposition. �
Remark 6.5. Sadly the two reductions of Propositions 6.3 and 6.4 cannot be combined, 
as that would require canceling the same broken chain with two different other broken 
chains. To see this, let F = FD8(A6) be as in Example 3.2, where we showed that 
αD8 = [S/D8]. Let us show that if we exclude both the sparkling broken chains and those 
that violate the hypothesis of Proposition 6.4, then we would not be able to compute 
the coefficient of the orbit [S/C1

2 ] in αD8 correctly.
As it is listed in Example 5.5, there are a total of 10 broken chains linking C1

2 to D8. Of 
these, only (C1

2 < D8) and (C1
2 , Z < D8) are drab, and of those, only the second would be 

counted in Proposition 6.4. Thus there is no chance for cancelation, and the intersections 
of Propositions 6.3 and 6.4 would yield cC1

2
(αD8) = 1/2, which is obviously false. The 

issue is that there can be cancelation between sparkling subgroups and subgroups that 
violate the hypothesis of Proposition 6.4, so that by combining both conditions we may 
undercount the cancelations needed in the proof of Theorem 5.2.

7. An application to characteristic bisets

In this section we demonstrate how we can use Theorem 5.2 to give structural results 
for the minimal characteristic biset associated to a saturated fusion system.

Definition 7.1. We consider (S, S)-bisets, i.e. finite sets equipped with both a left S-action 
and a right S-action, and such that the actions commute. The structure of such a biset 
X is equivalent to an action of S × S on X with (s1, s2).x = s1.x.(s2)−1, and for each 
point x ∈ X we speak of the stabilizer StabS×S(x) as a subgroup of S × S.

An F-characteristic biset for a fusion system F on S is a biset Ω satisfying three 
properties originally suggested by Linckelmann and Webb:

(i) For every point ω ∈ Ω the stabilizer StabS×S(ω) has the form of a graph/twisted 
diagonal Δ(P, ϕ) for some ϕ ∈ F(P, S) and P ≤ S, where the twisted diagonal 
Δ(P, ϕ) ≤ S × S is defined as

Δ(P,ϕ) =
{(

ϕ(s), s
) ∣∣ s ∈ P

}
.

(ii) Ω is F-stable with respect to both S-actions. For bisets that satisfy property (i) 
this boils down to checking that the number of fixed points satisfy

∣∣ΩΔ(P,id)∣∣ =
∣∣ΩΔ(P,ϕ)∣∣ =

∣∣ΩΔ(ϕP,id)∣∣
for all ϕ ∈ F(P, S) and P ≤ S.

(iii) The prime p does not divide |Ω|/|S| (which is an integer because of (i)). This ensures 
that Ω is not degenerate.
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In [9] it is shown that there exists a characteristic biset for F if and only if F is 
saturated, and it is shown how to reconstruct F given any F-characteristic biset. In [5]
two of the authors of this paper give a parametrization of all the characteristic bisets 
for a given saturated fusion system F . In particular it is shown that there is a unique 
minimal F-characteristic biset ΛF , and every other F-characteristic biset contains at 
least one copy of ΛF .

Theorem 7.2. (See [5, Theorem 5.3 and Corollary 5.4].) Let F be a saturated fusion 
system on a finite p-group S, and consider the product fusion system F × F on S × S. 
According to Proposition 2.2 there is an irreducible (F × F)-stable (S × S)-set αΔ(S,id)
corresponding to the diagonal Δ(S, id) ≤ S × S. Denote this (S × S)-set or (S, S)-biset 
by ΛF := αΔ(S,id).

The biset ΛF is then F-characteristic, and every F-characteristic biset contains a 
copy of ΛF (up to isomorphism). Hence ΛF is the unique minimal characteristic biset 
for F .

In order to apply Theorem 5.2 to study ΛF we need to figure out what broken chains 
look like in the context of bisets and the fusion system F × F .

In a product fusion system the conjugation is defined coordinate-wise. Hence two 
twisted diagonals Δ(P, ϕ) and Δ(P ′, ϕ′) are conjugate in F × F if and only if there 
are additional isomorphisms ψ, ρ ∈ F such that ϕ′ = ψ ◦ ϕ ◦ ρ−1. Consequently, every 
Δ(P, ϕ) with ϕ ∈ F(P, S) is conjugate to Δ(P, id) which is conjugate to Δ(P ′, id) for 
all P ′ ∼F P . In addition the subgroups of S × S that are subconjugate to Δ(S, id) in 
F × F are precisely all the twisted diagonals Δ(P, ϕ) with ϕ ∈ F(P, S) and P ≤ S. To 
study ΛF = αΔ(S,id) we therefore have to consider broken chains where all the groups 
are twisted diagonals coming from maps in F .

Two twisted diagonals satisfy Δ(Q, ψ) ≤ Δ(P, ϕ) exactly when ϕ extends ψ, i.e. 
Q ≤ P and ψ = ϕ|Q. Every (F × F)-conjugacy class of twisted diagonals contains a 
fully normalized representative on the form Δ(P ∗, id) where P ∗ is fully F-normalized, 
suppose for Theorem 5.2 that we have chosen such at fully normalized representative 
Δ(P ∗, id) for each conjugacy class. The broken chains that we consider are chains of 
inclusions connected by (F × F)-conjugations.

• Every chain of inclusions Δ(P1, ϕ1) ≤ · · · ≤ Δ(Pk, ϕk) is a sequence of extensions 
with ϕi = ϕk|Pi

.
• Every chain (except for the 0’th chain) starts with a diagonal of the form Δ(P ∗, id)

where P ∗ a fully normalized representative for the F-conjugacy class.

With this insight we can now apply Theorem 5.2 and relate ΛF to the largest normal 
subgroup in F . Here normality is in the sense of [1, Definition 4.3] where P ≤ S is 
normal in F if every homomorphism ϕ ∈ F(Q, R) extends to some ϕ̃ ∈ F(QP, RP ) with 
ϕ̃(P ) = P . For each fusion system F there is a largest normal subgroup, denoted Op(F).
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Proposition 7.3. (See [5, Proposition 9.11].) Let F be a saturated fusion system on a finite 
p-group S, and let ΛF be the minimal characteristic biset for F . Denote by Op(F) the 
largest normal subgroup of F . Then for each point ω ∈ ΛF the stabilizer StabS×S(ω) =
Δ(P, ϕ) satisfies P ≥ Op(F).

The original proof in [5] is quite involved. In contrast the proof below, using broken 
chains, is actually quite elementary once you have the idea of pairing broken chains of 
opposite sign together.

Proof. Let Δ(R, ρ) with ρ ∈ F(R, S) be such that R does not contain Op(F). We then 
wish to show that cΔ(R,ρ)(ΛF ) = 0. Because ΛF = αΔ(S,id), we can apply Theorem 5.2
and consider all (F × F)-broken chains linking Δ(R, ρ) with Δ(S, id):

cΔ(R,ρ)(ΛF ) =
∑

σ∈BCF×F (Δ(R,ρ),Δ(S,id))

(−1)�(σ). (7.1)

We will then show that all these broken chains cancel in pairs of two broken chains with 
opposite signs.

Consider a broken chain σ ∈ BCF×F (Δ(R, ρ), Δ(S, id)). Since S contains Op(F) and 
R does not, there is a first twisted diagonal Δ(P, ϕ) in σ with P ≥ Op(F), and necessarily 
P > R. Note that Δ(P, ϕ) cannot be in the beginning of any chain in σ, since normality 
of Op(F) implies that the end of the previous chain would also contain Op(F).

Let Δ(Q, ψ) be the twisted diagonal coming just before Δ(P, ϕ) in σ. Because Op(F)
is normal in F , hence also in S and P , the product Q ·Op(F) is a well-defined subgroup 
of P . If we restrict ϕ to QOp(F) we then have inclusions

Δ(Q,ψ) < Δ
(
QOp(F), ϕ

)
≤ Δ(P,ϕ).

If P 	= QOp(F), then the broken chain σ looks like

. . . Δ(Q,ψ) Δ(P,ϕ)
. . .

< ,

and we can add Δ(QOp(F), ϕ) in the middle to make the broken chain one step longer. 
Conversely, if P = QOp(F), and if Δ(P, ϕ) = Δ(QOp(F), ϕ) is not at the end of a chain 
in σ, then σ looks like

. . . Δ(Q,ψ) Δ(QOp(F), ϕ) Δ(T, η)
. . .

< < ,



M. Gelvin et al. / Journal of Algebra 423 (2015) 767–797 795
and we can remove Δ(P, ϕ) = Δ(QOp(F), ϕ) to make the broken chain one step shorter. 
These two constructions are inverse to each other, hence the broken chains with P 	=
QOp(F) are paired with the broken chains where P = QOp(F) and Δ(P, ϕ) is not at the 
end of a chain, and the pairing is such that the total length changes by 1. Hence these 
broken chains cancel each other in (7.1), and we are left with the broken chains σ where 
Δ(P, ϕ) = Δ(QOp(F), ϕ) is at the end of a chain in σ.

All the remaining broken chains look like

. . . Δ(Q,ψ) Δ(QOp(F), ϕ)

Δ(T, η) · · ·
. . .

<
∼

<

Let σi be the chain in σ that contains the segment Δ(Q, ψ) < Δ(QOp(F), ϕ). We divide 
the remaining broken chains into two types: Those broken chains where σi consists only 
of Δ(Q, ψ) < Δ(QOp(F), ϕ) and has i ≥ 1; we call these Type A. The remaining broken 
chains form Type B, i.e. the broken chains where the chain σi contains twisted diagonals 
before Δ(Q, ψ), or where i = 0. We will finish the proof by canceling broken chains of 
Type A with those of Type B and vice versa.

For each possible choice of Q, there is a chosen representative Q∗ ∼F Q such that 
Δ(Q∗, id) is fully normalized in the (F×F)-conjugacy class of Δ(Q, id) and Δ(Q, ψ) for 
all ψ ∈ F(Q, S). For each Q ∼F Q∗, we choose a particular F-isomorphism χQ : Q → Q∗. 
For each Q ∼F Q∗ and each homomorphism ψ ∈ F(Q, S), we also make the choice of an 
extension ψ̃ : QOp(F) → ψ(Q)Op(F) in F such that ψ̃|Q = ψ and ψ̃(Op(F)) = Op(F). 
In particular, we have isomorphisms χ̃Q : QOp(F) → Q∗Op(F).

If σ is Type A, then by the definition of broken chains we must have Δ(Q, ψ) =
Δ(Q∗, id) because it is the start of the chain σi and i ≥ 1. Hence σ looks like

. . . Δ(Q′, ψ′)

Δ(Q∗, id) Δ(Q∗Op(F), ϕ)

Δ(T, η) · · ·
. . .

∼

<

∼

<

(Type A)

We pair this with the following chain of Type B and a total length that has decreased 
by 1:
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. . .
Δ(Q′, ψ′) Δ(Q′Op(F), ψ̃′ ◦ (χ̃Q′)−1 ◦ ϕ ◦ χ̃Q′)

Δ(T, η) · · ·
. . .

<

∼

<

(Type B)

Conversely, if σ is Type B, then it has the shape

. . . Δ(Q,ψ) Δ(QOp(F), ϕ)

Δ(T, η) · · ·
. . .

<

∼
<

(Type B)

and we can split σi into two chains, thereby increasing the total length by 1:

. . . Δ(Q,ψ)

Δ(Q∗, id) Δ(Q∗Op(F), χ̃Q ◦ (ψ̃)−1 ◦ ϕ ◦ (χ̃Q)−1)

Δ(T, η) · · ·
. . .

∼
<

∼

<

(Type A)

When we split σi this way, Δ(Q, ψ) is still in a chain of length at least 1 if i ≥ 1, and if 
i = 0, then Δ(Q, ψ) is allowed to form a trivial chain by itself.

This completes the proof as all the remaining broken chains of Type A cancel in (7.1)
with all those of Type B. �
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