Production of heat shock proteins are induced when a living cell is exposed
to a rise in temperature. The heat shock response of protein DnaK synthesis in
E.coli for temperature shifts from temperature T to T plus 7 degrees,
respectively to T minus 7 degrees is measured as function of the initial
temperature T. We observe a reversed heat shock at low T. The magnitude of the
shock increases when one increase the distance to the temperature T0≈23o, thereby mimicking the non monotous stability of proteins at low
temperature. Further we found that the variation of the heat shock with T
quantitatively follows the thermodynamic stability of proteins with
temperature. This suggest that stability related to hot as well as cold
unfolding of proteins is directly implemented in the biological control of
protein folding. We demonstrate that such an implementation is possible in a
minimalistic chemical network.Comment: To be published in Physical Review Letter