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Abstract

Protease-activated receptors (PAR1-4) are activated by proteases released by cell damage or blood clotting, and are
known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance
activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of
the PART, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization
show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a speci-
fic PART or PAR4 activating peptide (PAR1/4-AP) caused functional effects characteristic of activation of the PLCB/PKC
pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCe) to
the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to
thrombin or PAR1T-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which
expressed markers for myelinated fibres. Sequential application of PART-AP and PAR4-AP showed that PAR4 is
expressed in a subset of the PART-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a dis-
tinct population of small IB4* nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-
nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1T-AP. Culture with nerve
growth factor (NGF) increased the proportion of thrombin-responsive neurons in the IB4" population, while glial-derived
neurotropic factor (GDNF) and neurturin upregulated the proportion of thrombin-responsive neurons in the 1B4* popu-

lation. We conclude that PART and PAR4 are functionally expressed in large myelinated fibre neurons, and are also
expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.

Introduction

Proteases released during injury activate protease-activated
receptors (PARs), a family of four G protein-coupled
receptors, by cleaving the extracellular N-terminal domain
to expose a tethered peptide ligand [1-5]. PAR1, PAR3,
and PAR4 are activated by thrombin, reviewed in [5,6],
while PAR2 is not activated by thrombin but is activated
by trypsin and mast cell tryptase [7-9]. PAR4 is specifically
activated by cathepsin G [10].

In sensory neurons of the dorsal root ganglia (DRG) a
functional response to thrombin was initially reported by
Gill et al [11]. The mRNA of all four PARs is expressed
in sensory neurons [12]. There is clear evidence for the
functional involvement of PAR2 receptors in peripheral
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mechanisms of inflammation and pain [13-15], partly via
sensitisation of the transient receptor potential vanilloid
subfamily 1 (TRPV1) receptor [15-18] and partly by
stimulating the release of substance P and CGRP from
the terminals of afferent neurons [13,19,20]. Sensitization
of TRPV1 depends on activation of the epsilon isoform
of PKC (PKCg), which can be observed as a translocation
of PKCe from the cytoplasm to the surface membrane
[21], and a similar translocation has been reported in
response to activation of PAR2 [22].

Thrombin is released by blood clotting following
blood vessel damage or tissue injury, and can act on
PARI, 3 and 4 expressed in primary sensory nerve
terminals present in the vicinity. Thrombin injected into
peripheral tissues induces proinflammatory effects, such
as protein extravasation and vasodilation, which are
mediated at least in part by a neurogenic mechanism
[9,14,23]. Activation of PAR1 may be involved in per-
ipheral nerve damage [24,25]. Some reports, however,
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describe antinociceptive effects of activation of periph-
eral PAR1 activation with subinflammatory protease
concentrations [26,27]. PAR4 activation has also been
shown to be analgesic [28-30], but other evidence
shows that the administration of a PAR4 activator
peptide (PAR4-AP) causes the formation of edema and
leukocyte recruitment in a rat paw model of inflamma-
tion [31].

To the best of our knowledge no studies have investi-
gated the localization of functional PAR1, 3 and 4 recep-
tors in sensory neurons, nor the role of receptors
activated by thrombin in TRPV1 sensitisation or in acti-
vation of PKCg in nociceptors. These questions are
addressed in the present study. We initially compared
the effects of thrombin in adult and neonatal rats and
mice in order to compare PAR functional expression in
different species and ages. In fact, though, we saw few
qualitative or quantitative differences between these four
groups of animals in responses to PAR activation. Most
experiments were therefore continued in neurons from
adult mice only, which also gave us the opportunity to
compare the results in wild-type and transgenic animals
in which the roles of specific PAR receptors were
explored by deletion of PAR1 or PAR2.

Methods

Culture of dissociated DRG neurones

DRGs were removed from adult and neonatal rats (Spra-
gue-Dawley,) or adult and neonatal C57BL/6] mice (neo-
natal rats and mice were both day 5-10 after birth).
For experiments on the effects of gene deletion PAR1
(PAR17"), PAR2-deficient (PAR27") and wildtype mice
were bred from the descendants of littermates from
heterozygous crosses (genetic background: C57BL/6
strain) originally obtained from Charles River Laboratories
(Toulouse, France) and kindly made available to us by
Prof. M. Steinhoff. DRGs were incubated in 0.25% collage-
nase (type IV, Worthington, Reading, UK) in PBS followed
by mechanical trituration. Cells were centrifuged and
resuspended in culture medium (DMEM containing 10%
FBS, 1% penicillin/streptomycin solution and 1% L-gluta-
mine, GIBCO), 10 uM cytosine arabinoside (Sigma) and,
where appropriate, 50 ng/ml nerve growth factor (Pro-
mega) or 100 ng/ml neurturin or GDNF (Peprotech). Neu-
rones were plated onto glass coverslips (BDH, UK), coated
with 10 pg/ml poly-L-lysine (Sigma, UK) and 5 pg/ml
laminin (BD Biosciences, Cowley, UK).

Electrophysiology

Methods used were as described before [32-34]. In brief,
all recordings were made from the somata of DRG neu-
rons with the whole cell patch-clamp method, at a hold-
ing potential of -70 mV, using an Axopatch 200B
amplifier and pClamp software (Molecular Devices, Palo
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Alto, CA). Test solutions were applied using a multibar-
rel automated rapid solution changer (CVscientific,
University of Modena, Modena, Italy). Only one record-
ing was performed on each culture dish to ensure that
data were not obtained from cells that had been inad-
vertently exposed to other test treatments. All experi-
ments were performed at room temperature (20 -22°C).

Immunohistochemistry: DRG sections

DRGs from adult male TO mice (25-30 g, Tucks, UK)
were rapidly removed and post-fixed in 10% formalin
solution for 72 h, embedded in paraffin, sectioned at
4 um on a sledge microtome (Leitz, Nussloch, Germany)
and mounted on Fisher Superfrost/Plus slides (BDH,
UK). Sections were dewaxed in xylene, incubated in
0.3% hydrogen peroxide in methanol to quench endo-
genous peroxidase activity and hydrated through an
ethanol series. Sections were then blocked in 5% normal
goat serum in 0.01 M PBS containing 0.03% Triton
X-100, prior to overnight incubation at +4°C with the
respective antibodies. Affinity-purified goat polyclononal
IgGs (concentration 200 pug/ml) were obtained from
Santa Cruz Biotechnology Inc (California, USA) and had
been previously characterised by Western blot and
immunohistochemistry. Anti-PAR1 (sc-8204; 1/100 dilu-
tion) was raised against a peptide mapping at the
N-terminal of mouse PAR1, and reacts with PAR1 of
mouse and rat origin. Anti-PAR3 (sc-8209; 1/800) was
raised against a peptide mapping to the C-terminus of
mouse PAR3, and reacts with PAR3 of mouse and rat
origin. Anti-PAR4 (sc-8462; 1/150) was raised against a
peptide mapping at the C-terminal of PAR4 of mouse
origin, and reacts with PAR4 of mouse and rat origin.
Immunoreactivity was detected using biotinylated don-
key anti-goat secondary antibodies raised against the
primary antibody host (7.5 pug/ml, Vector Laboratories,
Peterborough, UK), followed by avidin-biotin complex
(ABC) (Vector Laboratories, UK) and subsequently
visualised using diaminobenzidine (DAB)/hydrogen per-
oxide (Biogenex, Finchampstead, UK). All immunohisto-
chemical detection steps (from secondary antibody stage
onwards) were performed on an Optimax (Biogenex,
UK) robotic immunostainer to increase intersection
staining consistency, thereby increasing the accuracy
and reliability of semiquantitative analysis. Sections were
counterstained with Gill’s haematoxylin followed by
acid-alcohol (0.5% concentrated hydrochloric acid in
70% ethanol). Control experiments for immunohisto-
chemistry were performed by incubation with normal
goat serum in place of primary antibodies and resulted
in a complete absence of staining (not shown). Specific
labelling was tested by incubation of sections with affi-
nity-purified antisera and a 20-fold excess of peptide
obtained from Santa Cruz Biotechnology Inc (California,
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USA) and corresponding to the antigenic sequence to
which the antisera were raised. Antibody blocking in
this way resulted in a complete absence of specific stain-
ing (not shown), though background levels were similar
to those shown in Fig. 1.

In situ hybridisation (ISH)

The DRGs of 25-30 g adult male TO mice were rapidly
removed after cervical dislocation, frozen in isopentane,
chilled to -40°C and sectioned at 10 pm using a Brights
cryostat (model OTF). Sections were post-fixed with 4%
paraformaldehyde in PBS, pH 7.2, dehydrated through an
ethanol series and stored in 95% ethanol at 4°C until use.
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Oligonucleotide probes specific to mouse PARs were
designed (see Table 1) and custom-synthesised by Sigma
Genosys (Cambridge, UK). Purification was by 8M urea/
8M polyacrylamide preparative sequencing gel electro-
phoresis. Specificity was thoroughly checked using
BLAST. For PARI, the probe was synthesised comple-
mentary to bases 969-1008 (according to GenBank Acc.
No L03529); for PAR2, complementary to bases 930-969,
according to [35]; for PAR3, complementary to bases
351-390, according to [36]; and for PAR4, complemen-
tary to bases 1059-1098, according to [37,38].

Probes were 3’-end-labelled using TdT-mediated addi-
tion of [*S]deoxyadenosine 5 a.-thiotriphosphate (NEN,
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Figure 1 Expression of PAR1-4 in sections of adult mouse DRG. A. In situ hybridisation (ISH) for PAR1-4 carried out as described in Methods.
Positive cells shown by arrowheads. Sections counterstained using hematoxylin-eosin. Scale bars 40 um. B. Similar sections in which PAR1, 3 and
4 expression was determined using immunohistochemistry. Positive cells shown with arrows. The PAR2 antibodies available to us were found to
be non-specific on Western blots and results for PAR2 are therefore not shown. Sections counterstained using hematoxylin-eosin. Scale bars 40
pm. C. Expression of PAR1 - 4 as a function of neuronal size in adult mouse DRG using ISH. Overall neuronal population (grey) is compared with
those positive for each PAR isoform (black). Overall, PART was found to be expressed in 15.0% of neurones, PAR2 in 21.5%, PAR3 in 49.5% and
PAR4 in 14.5%. D. Similar results obtained using immunohistochemistry. PAR2 is not shown because the antibody was found to exhibit non-
specific binding, and PAR4 is not shown because it proved impossible to distinguish neuronal from glial cell staining (see B). Overall PART was
expressed in 10.3% of neurones, and PAR3 in 42.0%.
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Table 1 Oligonucleotide probe sequences for in situ
hybridisation studies

Receptor Oligonucleotide probe (5'—3’) Probe
length
PAR1 caaagcagacgatgaagatgcagaacaccgcggcagacag 40
PAR2 gaagtacatggccagcacggtgatgatgagtcggatagec 40
PAR3 tcacgtggagagttgaaatactgtcctcgggacactccge 40
PAR4 catagcgcgtaccttctccctgaactcatgggacacatag 40

Hounslow, UK) [39]. Hybridisation was carried out as
previously described [40]. Briefly, 3.5 x 10° cpm of >°S-
labelled probe in 100 pl of minimalist hybridisation buf-
fer (50% deionised formamide, 4 x standard saline
citrate [SSC], 10% dextran sulphate, and 40 mM DTT,
all from Sigma except dextran sulphate, Anachem,
Luton, UK) was placed on each slide and coverslipped
with a Parafilm (Sigma, Poole, UK) coverslip. Hybridisa-
tion was carried out overnight in a humid environment
at +39°C. To define non-specific hybridisation, adjacent
sections were incubated in a mixture of labelled probe
with excess (100-fold) of unlabelled probe. In all cases,
incubation of sections with 100-fold excess of unlabelled
‘cold’ probe abolished the signal. Hybridised probes
were detected at the cellular level using NTB2 nuclear
emulsion (Kodak, Hemel Hempstead, UK). Sections
were counterstained with Gill’s haematoxylin and eosin
Y alcoholic solution.

The cross sectional areas of neuronal profiles with a
visible nucleus were measured using the Scion Image
Analysis system. Silver grains overlying each identified
neuronal profile were counted for PAR1, PAR2 and
PAR4. For PAR3 the high levels of expression of this
receptor’s mRNA made grain counting impossible, and
cells were given a score (-, negative/below detectable
levels; +, weakly labelled; ++ moderately labelled; +++,
intensely labelled). Signal intensity for PAR1, PAR2
and PAR4 was determined by dividing grain counts by
the area of the neuronal profile. To reduce the risk of
biased sampling of the data owing to varying emulsion
thickness and background density of silver grains for
each section, a signal/noise (S/N) ratio was used, as
described previously [40]. The signal intensity of each
neuronal profile was expressed as a S/N ratio of the
mean background level as described [41,42]. Neuronal
signal intensities greater or equal to three times the
background level (S/N23) were considered positively
labelled.

Immunocytochemistry: isolated DRG neurons and glia

For PKCe visualization, rat DRG neurons cultured for
1-3 d in vitro were treated with a PAR agonist (for
times see Table 2) and then rapidly fixed for 10 min at
room temperature with paraformaldehyde/PBS (4%
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formaldehyde and 4% sucrose mixed 50:50 with PBS).
Fixed cells were washed three times in PBS (with 0.1%
fish skin gelatin to block nonspecific binding), permeabi-
lized for 30 min at room temperature with Triton X-100
(0.2% in PBS), and incubated overnight at 4°C with rab-
bit polyclonal anti-PKCe antibody [33] diluted 1:1000 in
PBS-T/gelatin (PBS with 0.05% Triton X-100). Cover-
slips were then incubated for 1 h at room temperature
with donkey anti-rabbit IgG conjugated to the fluoro-
phore Alexa Fluor 488 (1:200; Invitrogen), washed three
times in PBS/gelatin, and visualized with a confocal
microscope (Leica SP2).

To characterize subpopulations of protease-responsive
neurons, double immunostaining on DRG cultures was
performed. Coverslips processed for PKCe immunoreac-
tivity as above were incubated overnight at 4°C with the
following polyclonal antibodies: anti-substance P (SP),
anti-calcitonin gene-related peptide (CGRP), anti-N52
(1:100; all polyclonal antibodies from Santa Cruz
Biotechnology, CA), anti-parvalbumin (1:1000, Sigma) or
anti-COX-1 (1:100, Cayman Chemicals, cat. no. 160110).
After washing, coverslips were exposed for 1 h at room
temperature to donkey anti-goat antibodies (or goat
anti-mouse for anti-parvalbumin and anti-COX-1 anti-
bodies) conjugated to the fluorophore Alexa Fluor 594
(1:200, Invitrogen), washed three times in PBS/gelatin,
and visualized. Double staining for IB4, on coverslips
previously processed for PKCe, was assessed by incubat-
ing the cells for 1 h at room temperature with IB4
bound to Alexa Fluor 594 (1:100, Invitrogen) followed
by washing (three times). Coverslips were stored at 4°C
in sodium azide (0.05% in PBS) for additional analysis.
Non-neuronal cells in DRG cultures were identified as
glial by morphology by their lack of response to 25 mM
KCL and by staining with the glial-specific anti-S100
antibody (Sigma) (not shown).

Quantification of PKCs translocation
Activation of PKCeg results in translocation from an
entirely cytoplasmic location to the neuronal cell

Table 2 PAR activators and concentrations used
PAR activator

Concentration Selective for Source

Thrombin 0.01-100 nM PAR1,34 Sigma, cat T4648
Cathepsin G 1-1000 nM PAR4 Sigma, cat C4428
Trypsin 0.1-10 uM PAR1,2,34 Sigma, cat T9201
Collagenase 0.25% - Sigma, cat 4188
type IV

TFLLR-NH, 100 uM PAR1 Tocris, cat 1464
SFLLRN-OH (for rat) 100 uM PAR1 Bachem, cat H8365
SLIGRL-NH, 100 uM PAR2 Tocris, cat 1468
AYPGKF-NH, 200 uM PAR4 Sigma, cat A3227
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membrane. Translocation was quantified by determining
fluorescence intensity along a line positioned across the
cell so as to avoid the nucleus (for details see Cesare
et al, 1999). Neurones in which intensity at the cell
membrane was 1.5x greater than the mean of cytoplas-
mic intensity were counted as positive.

Intracellular calcium imaging

Calcium imaging was performed as described previously
[32-34]. In brief, isolated DRG neurons, plated onto
glass coverslips were loaded with the calcium-sensitive
fluorescent indicator Fluo-4 AM (10 pM; Invitrogen).
Coverslips were imaged with an inverted confocal
microscope (MicroRadiance; Bio-Rad, Hemel Hemp-
stead, UK) or with a camera-based system (Andor Tech-
nology, Belfast, UK) in HBSS (140 mM NacCl, 1.8 mM
CaCl,, 1 mM MgCl,, 4 mM KCl, 10 mM HEPES, 4 mM
glucose, pH 7.4). High numerical aperture 10x or 20x
objectives were used. PAR agonists used are given in
Table 2 below. The peptide agonist TFLLR was used to
activate PAR1 apart from in experiments on intact rat
skin, where the more effective rat agonist SFLLRN was
used. Proteases were purchased as 1,000 NIH units and
concentrations were calculated from conversion factors
supplied by the manufacturer giving units/mg protein.
Neurons were distinguished from non-neuronal cells by
applying 25 mM KCl, which induces a rapid increase of
[Ca®*]; only in neurons. At the end of the experiment,
the maximal fluorescence (F,,.,) was obtained by appli-
cation of ionomycin (10 pM; Calbiochem, La Jolla, CA)
in the presence of Ca** (30 mM) and K* (125 mM).
Data are expressed as AF/F, ... All experiments were
performed at 20-22°C (RT).

The protocol used for sensitisation experiments was
similar to that previously described [43]. In brief, cells
were exposed to short (1.6 s) repeated capsaicin applica-
tions, and PAR activator peptides or proteases (Table 2)
were applied for 2 min prior to the sixth capsaicin appli-
cation. For control experiments PAR activator applica-
tion was omitted. The ratios obtained by dividing the
amplitude of the sixth capsaicin peak by the amplitude
of the fifth capsaicin peak were used to plot a histogram
for each treatment group. The distribution seen for each
group was compared with the distribution obtained
from control, vehicle-treated cells. A neuron was defined
as sensitized if the ratio was greater than the upper
99.7% confidence interval calculated from control neu-
rones. Ad-hoc software was written for analysis of
calcium imaging traces.

CGRP release studies

Male Wistar rats (80 - 100 g) were sacrificed in CO,
and the hairy skin of the hindpaw (26 + 14 g, mean +
SD) was subcutaneously excised from the knee to the
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foot sparing larger vessels and nerves. The skin flap was
wrapped around an acrylic rod with suture thread,
exposing the corium side, and the preparation was
placed in a beaker containing physiological buffer solu-
tion bubbled with 95% O,, 5% CO,, pH 7.4 in a water
bath (32°C) for 30 min to equilibrate. The skin sample
was then sequentially advanced in 5 min intervals
through a series of six glass test tubes filled with 1.2 ml
gassed buffer and mounted in a shaking bath. The first
tube was to measure basal CGRP secretion, the subse-
quent three tubes (15 min) contained the PAR1 or
PAR?2 activator peptide (table 2) or buffer solution for
control, the fifth tube was at a temperature of 47°C to
apply noxious heat stimulation, and the sixth and final
tube (again 32°C) was to measure recovery or residual
CGRP release. Each incubation fluid was immediately
processed to determine the CGRP concentration (pg/ml)
using a commercial enzyme immunoassay kit according
to the manufacturer’s instructions (SPIbio, Montigny,
France). The procedure has previously been validated
and described in detail [44].

Statistical analysis

Statistical comparisons were performed with one-way
analysis of variance (ANOVA), followed by Bonferroni
or Scheffé post hoc test and 3> (SPSS for windows);
pairwise comparisons were made using Student’s t-test.

Results
Expression of PARs in DRG neurons: in situ hybridisation
In situ hybridization (ISH) was implemented to deter-
mine the cellular distribution of PAR subtype mRNAs
in DRGs from adult mice as previously described [40].
In Fig. 1A, bright-field photomicrographs of representa-
tive examples of autoradiographs show the localization
of oligonucleotide probes complementary to mouse
PAR1, 2, 3, 4 mRNA (arrowheads). Silver grains are
visualised as small black dots overlying tissue sections.
Probes with comparable activity were used for each
receptor. PAR3 mRNA was intensely expressed in many
DRG neurons and the mRNAs for PAR1, PAR2 and
PAR4 were more weakly expressed. A comparison of
expression intensity between receptor subtypes is subject
to several variables, such as efficiency of the labelling
reaction to incorporate 35S-dATP tails into the oligonu-
cleotide probes, and hybridisation strength, though these
effects were minimised as much as possible. However,
within these limitations it seems clear that the expres-
sion of PAR3 is much more intense than that of PARI,
2 and 4. In the case of PAR1, 2 and 4 a quantitative
method was used to distinguish neurons with signal
above background, see Methods and [40].

Fig. 1C shows histograms of cells positive for PAR1-4
against mean cross-sectional area of neuronal profiles
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(between 912 and 1072 cells obtained from five sections
for each PAR and from three adult animals). Grey histo-
grams indicate all neuronal profiles with nuclei present
that were measured, and black bars show profiles with a
positive in situ hybridization signal/noise ratio. PAR1
mRNA was found to be expressed in 15.0 + 1.5% of DRG
neurones across all size classes. PAR2 mRNA was present
in 21.5 + 3.4% of total neuronal profiles, almost exclu-
sively in neurones with a small cross-sectional area; there
was only a low level of mRNA expression in medium
sized neurones and no detectable expression in neurones
with a large cross-sectional area. PAR3 was present in
49.5 + 4.5% of neurons and was expressed mainly in neu-
rones with a small cross-sectional area, but unlike PAR2,
PAR3 mRNA was also expressed in medium-sized neu-
rones. PAR4 mRNA expression was found in a similar
proportion of neurones to PAR1 (14.5% + 4.3) and with a
distribution of expression across the neuronal size range
similar to that found for PARI1.

Expression of PARs in glia was difficult to detect
unequivocally using ISH because of the small size of
these cells and the scatter of silver grains. We show
below that there is clear functional expression of PAR1
and PAR?2 in glial cells.

Expression of PARs in DRG neurons:
immunohistochemistry
PARI, 3 and 4 immunoreactivity (IR) was detected in
DRG neurons (Fig. 1B). The PAR2 antibodies available
to us showed clear evidence of non-specific bands on
Western blot and results are therefore not shown. Pre-
absorption controls with a 20-fold excess of immunising
peptide completely ablated the signals for PAR1, 3 and
4 in adjacent sections, as did incubation in the absence
of primary antibody (data not shown). As with ISH, the
distribution of expression was determined by measuring
neuronal cross-sectional area, and by only including
profiles in which there was a visible nucleus (Fig. 1D).
PARI1-IR was restricted to a small percentage of neu-
rones (10.28 + 2.54%) and was expressed in cells across
the neuronal size range. The results for PAR1-IR were
similar to those obtained with ISH (compare Fig. 1C
and 1D). Expression was punctate and appeared particu-
larly intense in vesicular structures surrounding the
nucleus, suggesting the presence of large intracellular
stores of protein. PAR3-IR was detected in 42.03 *
4.95% of neuronal profiles (Fig. 1D), similar to results
obtained using ISH (Fig. 1C). PAR4-IR was also detected
in DRG neurons but PAR4-IR was particularly strongly
expressed in glial cells, and it was not always possible to
distinguish positive neurones stained at the plasma
membrane from surrounding ensheathing glial cells (see
Fig. 1B). For this reason PAR4-IR was not quantified.
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Calcium signals activated by PAR agonists in DRG
neurons

We next examined functional activation of PAR recep-
tors. A sub-population of small DRG neurons responded
to the specific PAR2 activator peptide SLIGRL (PAR2-
AP), which is derived from the activator domain of
PAR?2 (Fig. 2A). The proportion of neurons responding
to the PAR2-AP with an increase in [Ca]; was 15.6% in
neonatal rats and 12.1% in neurons from adult mice.
A large majority of the PAR2-AP responsive neuronal
population also expressed TRPV1 and TRPA1, as shown
from the increase in [Ca]; in response to the specific
TRPV1 agonist capsaicin and to the specific TRPA1
agonist mustard oil, and bound the plant isolectin B4
(IB4), which identifies a non-peptidergic subpopulation
of nociceptors (see Fig. 2A and 2B). These PAR2" neu-
rons therefore have the characteristics of IB4-positive
nociceptors. None of these neurons, however, responded
to thrombin and so are unlikely to express PAR1 or 4
(PAR3 appears unresponsive in DRG neurons, see
below).

Thrombin, which activates PAR1, 3 and 4, elicited
robust increases in [Ca]; in a distinct sub-population of
sensory neurons (Fig. 2C,D). The proportion of neurons
responding to thrombin with an increase in [Ca]; was
17.5% in neonatal rats and 15.2% in neurons from adult
mice. No neuron responsive to thrombin also responded
to PAR2-AP (Fig. 2B,D). Among these thrombin-respon-
sive neurons, around 25-33% responded to capsaicin,
mustard oil, and to the peptides Bv8 and bradykinin,
both of which act on G-protein coupled receptors
expressed in nociceptors [34], but none bound IB4
(Fig. 2D). About a third of thrombin-responsive neurons
are therefore IB4-negative nociceptors, while the
remainder are non-nociceptive. As PAR2 is predomi-
nantly expressed in IB4" nociceptors (see above) this
shows that functional PAR2 and PAR1/3/4 receptors are
located in separate subpopulations of nociceptors. PAR4
was found to be colocalised with PAR1 expression in
neonatal rat neurons, because calcium responses to a
PAR4-AP (AYPGKFR) were elicited in a subset of PAR1
expressing neurons (see below) and all cells responding
to PAR4-AP also exhibited a calcium signal in response
to PAR1-AP (not shown).

Glial cells are clearly distinguishable from neurons
both on morphological grounds and because they do
not exhibit a calcium increase in response to elevated [K
"] (Fig. 2C). Most glial cells responded to thrombin
(Fig. 2E). A few glial cells responding to thrombin also
responded to PAR2-AP (3.6% -see Fig. 2E,F), showing
that in contrast to neurons, PAR2 and PAR1/3/4 are co-
expressed in a small subset of glial cells. The calcium
response to thrombin and PAR1-AP in glial cells was
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Figure 2 Calcium signals elicited by PAR agonists. A. Adult mouse neuron in which an increase in [Cal; was elicited by a specific PAR2
activator peptide (PAR2-AP, SLIGRL, 100 puM), but not by thrombin (100 nM) which activates PAR1, 3 and 4. The neuron also expresses receptors
for TRPAT and TRPV1, as shown by its responses to the specific TRPAT agonist mustard oil (MO, 100 uM) and the specific TRPV1 agonist
capsaicin (1 uM). B. Most PAR2-AP-responsive adult mouse neurons also responded to capsaicin and mustard oil but none responded to
thrombin (n = 180 neurones). Staining of unfixed cells with fluorescently labelled IB4 (isolectin B4 from Griffonia simplicifolia coupled to Alexa
594, Molecular Probes) immediately after the calcium imaging experiment showed that most PAR2-AP responsive neurons were 1B4-positive
(grey bar). Similar results were obtained in neonatal rat neurons (88.6 + 5.1% of cells responding to PAR2-AP also responded to capsaicin, and
825 + 6.0% were IB4"). C. Adult mouse neuron in which an increase in [Ca]; was elicited by thrombin (100 nM). This neuron also expresses the
ion channels TRPA1 and TRPV1, as shown by its responses to mustard oil (MO, 100 uM) and capsaicin (1 puM). Cell was identified as a neuron on
morphological grounds, confirmed by calcium increase observed in response to 25 mM KCl. D. Around 25-33% of thrombin-responsive neurons
(n = 455) also responded to capsaicin (1 uM), mustard oil (100 uM), the peptide Bv8 (100 nM) and bradykinin (1 uM) but none responded to
PAR2-AP (100 uM). Final bar shows that no thrombin-responsive adult mouse neuron bound IB4. E. Glial cell which responded with increase in
[Ca]; to PART-AP (100 pM) and to PAR2-AP (100 uM). Cell was identified as a glial cell on morphological grounds, confirmed by absence of
calcium increase in response to 25 mM KCl. In separate experiments, cells of this morphology were also identified by the glial-specific anti-S100
antibody (not shown). F. Percentage of glial cells responding to thrombin (100 nM), PART-AP (100 uM) and PAR2-AP (100 uM). Deletion of PAR1
ablated responses to both thrombin and PAR1T-AP (bars 4 and 5) while deletion of PAR2 was without effect on responses to thrombin and
PART-AP (bars 6 and 7).
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ablated by genetic deletion of PAR1 but was unaffected
by deletion of PAR2 (Fig. 2E).

PARS3 is highly expressed in DRG neurons (Fig. 1).
PAR3 mRNA is seen in about 50% of neurons and
PARS3 protein is seen in about 42% of neurons. Func-
tional responses to thrombin, which should activate
PAR3 (along with PAR1 and PAR4), are seen in a signif-
icantly lower number of neurons, however, suggesting
that PAR3 is non-functional, at least when expressed in
the absence of other PARs. To test this more conclu-
sively it would be desirable to activate PAR3 alone, but
specific activation of PAR3 in neurons coexpressing
PAR1 and PAR4 is not possible because PAR3 peptides
also activate PAR1 and PAR4 [45,46]. We therefore
tested for PAR3 responses by desensitizing PAR1 and 4
with their specific activator peptides, and then retesting
with thrombin (Fig. 3). Following desensitization of
PAR1 and PAR4, calcium signals in response to throm-
bin are seen in only a very small number of neurons, far
smaller than the proportion in which histological studies
had shown expression of PAR3. These results support
the idea the PAR3 is largely non functional by itself in
DRG neurons, but they do not rule out the possibility
that PAR3 may heteromerise with other PARs to form
functional receptors, as has been found in other studies
[47,48].

Sensitization of TRPV1 by PAR activation

Activation of the heat and capsaicin gated ion channel
TRPV1 is potentiated by PAR2 activation [22]. Fig. 4
shows a similar potentiation of heat-activated inward
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currents by specific PAR1 and PAR4 activator peptides.
Both PAR agonists caused substantial sensitization of
TRPV1 in a subset of neurons (c. 10% of total neurons,
consistent with studies of expression of PAR1 or PAR4,
see above). Sensitization was long-lasting and subse-
quent PAR-AP applications were ineffective (Fig. 4B,D).
Thrombin and trypsin also caused a substantial
enhancement in the inward current activated by heat
(Fig. 4E).

Many pro-inflammatory mediators sensitize TRPV1
via downstream activation of PKCg, reviewed in [49].
Consistent with this also being the principal signaling
pathway activated by PAR1/3/4, Fig. 4E shows that the
sensitization caused by thrombin was reduced at least
5-fold by the specific PKC inhibitor Ro-318220 or by
the broad-spectrum kinase inhibitor staurosporine.

We next tested sensitization of TRPV1 by thrombin in
wild-type and PAR1”" mice. In order to improve cell yield
we employed a calcium imaging protocol similar to that
used by Bonnington & McNaughton [43]. We activated
TRPV1 by applying brief pulses of the specific agonist cap-
saicin, and tested the effect of thrombin in enhancing
TRPV1 activation (Fig. 4F). Ratios of responses to capsai-
cin before and after application of thrombin were calcu-
lated, and sensitized cells were identified when the ratio
exceeded the 99.7% confidence limits of a distribution
obtained from control experiments (see Additional file 1).
In PAR1”" animals the percentage of sensitized neurons
using thrombin as a PAR activator was 8.3%, significantly
lower than in WT neurons (Fig. 4G). Thus removal of
PAR1 reduces but does not completely abolish the

A

1.0 capsaicin
PAR1-AP
0.8 — —
PAR4-AP
x
g 0.6
w thrombin
L 04
g
0.2
0.0

0 2 4 6 8 10 12 14

Time (min)

Figure 3 Desensitization of PAR1 and PAR4 ablates calcium signals in response to thrombin. A. Increase in [Ca]; recorded as in Fig. 2.
Calcium increase elicited by application of PAR1-AP completely desensitizes response to a subsequent application of PAR1-AP but not to PAR4-
AP. The calcium signal in response to thrombin was ablated in the large majority of cells by desensitization of both PART and PAR4. All
experimental details as in Fig. 2. B. Following desensitization of PAR1 and PAR4 only 1.6% of neurons gave a calcium signal in response to
thrombin, compared with 15.2% in control neurons. Summary of results from n = 187 neurons from 4 separate coverslips.
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Figure 4 Sensitization of TRPV1 by PAR activation. A - D. Heat-
activated currents were significantly enhanced in c. 10% of neurons
by application of PART-AP and PAR4-AP. Single traces in panels to
left are taken from time courses shown in right hand panels. Both
PAR1-AP (TFLLR at 100 uM) and PAR4-AP (AYPGKF, 200 uM) caused
long-lasting sensitisation. Sensitization showed complete
tachyphylaxis on a second application. E. Percentage sensitization in
experiments similar to those in A. Thrombin (100 nM), trypsin (100
nM), PART-AP and PAR4-AP all caused approximately a doubling of
the inward current elicited by heat. Thrombin-induced sensitisation
was largely blocked by the PKC inhibitor Ro318220 (1 uM) and by
the broad-spectrum kinase inhibitor staurosporine (1 uM, both
applied throughout the experiment). F, G Calcium imaging
experiments to monitor functional sensitization of TRPV1 by
thrombin. F shows typical experiment in which increases in [Ca];
elicited by successive brief exposures to capsaicin (500 nM, 1 s)
were enhanced by exposure to thrombin (100 nM, black bar). All
experiments performed in adult mouse neurones. G shows
percentage of cells sensitized in experiments similar to those shown
in F on neurons from WT and PAR1”" adult mice. Difference was
significant (x2 test, ¥, p < 0.05).
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response to thrombin, consistent with the idea (see above)
that DRG neurons also express functional PAR4 receptors.

Note that the percentage of neurons from PAR1 ™/
mice responding to thrombin is similar to the propor-
tion of neurons expressing PAR4 by ISH (14.5%, see Fig.
1C above) but is very much smaller than the proportion
expressing PAR3 by both ISH and immunohistochemis-
try (49.5% and 42.03% respectively, see Fig. 1C,D above).
Combined with the results in Fig. 3 (above) these results
suggest that PAR4 receptors in DRG neurons are func-
tionally activated by thrombin but that PAR3 receptors
are not.

PAR1/4 agonists cause translocation of PKC-¢ in sensory
neurons

The activation of PKCe can be visualized as a transloca-
tion from the cytoplasm to the cell surface membrane,
and provides a sensitive indicator of those neurons acti-
vated by bradykinin [21,33] or by other pro-inflammatory
mediators [34]. We found that thrombin and PAR1-AP
caused a pronounced translocation of PKC-¢ to the neu-
ronal cell membrane in a subset of neurons from adult
and neonatal rats and from adult mice (Fig. 5A). PKCeg
translocation, expressed as the percentage of neurons in
which clear translocation was observed, peaked at 30 s
after application of a maximal concentration of 100 nM
thrombin (Fig. 5B). At longer application times PKCg
was internalized into peri-nuclear vesicles (Fig. 5A, right
hand panel), as is seen after longer exposures to bradyki-
nin [21] and to the prokineticin receptor agonist Bv8
[34]. Translocation of PKCe was half-activated by a
concentration of 2.0 + 0.4 nM thrombin and was fully
saturated at 100 nM thrombin (Fig. 5C). In adult mouse
neurons cultured without NGF translocation was
observed in 15.6 + 0.5% of the population (Fig. 5D), a
proportion which increased to 19.3 + 1.0% with NGF (see
below). Responsive neurons were distributed across all
neuronal size classes, in agreement with histological data
for expression of PAR1 and 4 (Fig. 1).

Other proteases known to activate PAR1 and PAR4
were also effective in causing translocation of PKCe (Fig.
5E). Trypsin, a broad-spectrum PAR activator, produced
translocation in 17.1 + 1.6% of neurons. Cathepsin G,
which preferentially activates PAR4 over PAR1, caused
translocation in 11.8 + 2.3% of neurons. Type IV collage-
nase was ineffective. The PAR1-AP TFLLR caused trans-
location in a similar proportion of neurons to thrombin,
while the specific PAR4-AP AYPGKF caused transloca-
tion in a significantly lower percentage of neurons than
thrombin (9.1 + 2.1%, n = 5 p < 0.05). Application of the
PAR1-AP TFLLR in combination with PAR4-AP gave
only a slightly higher percentage than PAR1-AP applied
alone (17.3 + 0.6%, n = 6). These data agree with those
above (Fig. 3B) in showing that PAR4 receptors are
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Figure 5 Translocation of PKCe to neuronal surface membrane caused by thrombin. A. Translocation of PKCe to neuronal surface
membrane in control conditions (left) and following exposure to thrombin (100 nM, 30 and 60 sec). PKCe translocated rapidly to the surface
membrane following application of thrombin (arrow in middle panel) and at longer times became progressively internalised (arrowhead in
middle panel and right panel). Adult mouse neurons cultured in 10% FBS in absence of NGF and neurturin. Scale bars 5 um. B. Percentage of
neurons showing translocation to the plasma membrane as a function of time of exposure to thrombin (number of neurons > 2000 for each
point). C. Peak percentage of neurons in which PKCe was translocated, as a function of thrombin concentration (number of neurons > 2000 for
each point). Continuous curve shows a Hill equation with n = 0.7 and K;,, = 2 nM. D. Size distribution of thrombin-responsive neurons. Grey
bars show size distribution of overall neuronal population, and black bars show neurons in which PKCe translocation was observed following
exposure to thrombin (100 nM, 30 s). E. Activation of PKCe translocation by proteases and specific PAR activator peptides. Thrombin, trypsin and
cathepsin G (all 100 nM, 30 s) caused translocation of PKCe in a similar percentage of adult mouse neurons but tryptase and collagenase IV were
ineffective. *, p < 0.05, ***, p < 0.001, t test compared to thrombin. PART-AP (TFLLR, 100 mM) caused translocation similar that of thrombin.
PAR4-AP (AYPGKF, 200 mM, bar 2) caused translocation in a significantly smaller proportion of neurons when compared to PART-AP. Increased
concentrations of activating peptides did not cause increased translocation (not shown). The effects of PAR1-AP and PAR4-AP (both at 100 mM)
were partially but not completely additive. PAR2-AP (SLIGRL-NH,) had no effect. *, p < 0.05, ***, p < 0.001, t test compared to PAR1 alone.
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expressed in a subset of the PAR1-expressing sensory
neurons. PAR2-AP was ineffective in causing transloca-
tion of PKCe in any neuron.

Characteristics of neurons expressing functional thrombin
receptors

We next examined the histological characteristics of
thrombin-responsive neurons, using translocation of
PKCe as a marker. Around half of the thrombin-respon-
sive neuronal population, predominantly medium-sized
and large neurons, stained for neurofilament H (NFH"),
a marker for myelinated neurons (second bar in Fig.
6B). Only a small fraction (around 6%) of these NFH"
neurons also expressed functional TRPV1 receptors, as
demonstrated by a calcium increase in response to
application of capsaicin (see white bar at bottom of sec-
ond bar in Fig. 6B), showing that this class of thrombin-
responsive large neurons is predominantly non-
nociceptive.

A distinct population of thrombin-responsive neurons,
mainly small neurons, co-expressed the neuropeptides
CGRP and/or substance P (bars 3 and 4 in Fig. 6B).
Neurons in this population gave a calcium increase in
response to capsaicin and therefore express TRPV1
(final bar in Fig. 6B). Very few thrombin-responsive
small neurons were IB4-positive (5% of the thrombin-
responsive population), in agreement with Fig. 2D above
where neurons responding to thrombin with a calcium
increase were found to be IB4-negative. The presence of
neuropeptides and the lack of binding of IB4 identifies a
TrkA positive C-fibre nociceptor sub-population [50] as
the location of nociceptor PAR1/4 expression. In addi-
tion, thrombin-responsive neurons were negative for
cyclooxygenase 1 (COX-1), an enzyme expressed in a
subpopulation of small-sized nociceptive neurons [51],
and for parvalbumin, expressed in non-nociceptive sen-
sory neurons innervating muscle spindles [52]. In sum-
mary, our data show that functional receptors for
thrombin are expressed broadly across all neuronal size
classes, in neurons subtending both myelinated and
unmyelinated fibres. In the unmyelinated neuronal
population thrombin-responsive neurons are found in
the peptidergic/IB4  class of nociceptors.

Release of CGRP by heat is potentiated by PAR1

The results outlined above show that PAR1/4 receptors
in small neurons co-express with TRPV1 and the neuro-
peptide CGRP, suggesting that neuropeptide release
caused by TRPV1 activation should be potentiated by
PARI. Fig. 7 shows an experiment in which this hypoth-
esis was tested using a rat skin preparation, which con-
tains nerve terminals from which CGRP can be released
by noxious heat stimulation [53]. In mouse skin, this heat
response is markedly reduced, though not abolished, if
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Figure 6 Co-localisation of thrombin-induced translocation of
PKCe with other neuronal markers. A. PKCe translocation (green)
following exposure to thrombin (100 nM, 30 s) colocalises with
other neuronal markers as shown. PKCe translocation was co-
localised in c. half of cells with expression of the neuropeptide
CGRP and with the neurofilament marker N52, and in a smaller
proportion of cells with the neuropeptide substance P (SP) (panels
on right). PKCe translocation was not in general co-localised with
IB4 binding nor with parvaloumin (Prv) or COX-1 (panels on left).
Neurones from adult mice cultured in the absence of NGF, with the
exception of the COX-1 experiment which was carried out in
neonatal rat sensory neurons cultured in NGF (100 ng/ml) as the
antibody available to us did not bind mouse COX-1. Scale bars all

5 um. B. Summary of results from experiments similar to those
shown in A. First bar shows percentage of cells showing
translocation of PKCe in response to thrombin (100 nM, 30 s).
Remaining bars show percentages of these thrombin-responsive
cells which co-expressed the neuronal markers noted beneath each
bar. White bar in N52 column shows the proportion of the N52
positive neurons in which TRPV1 expression had been
demonstrated by recording a calcium increase in response to
capsaicin prior to fixation (cf. Fig. 2). Final white bar shows overall
fraction of thrombin-responsive neurons in which TRPV1 expression
had been demonstrated by calcium imaging.
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Figure 7 Heat-induced CGRP release from isolated rat skin is
facilitated by PAR1 activation. A. CGRP release elicited by heat
(closed circles, n = 16) was increased approximately two-fold by the
rat PART-AP SFLLRN-OH (100 uM, open circles, applied during
minutes 5 to 20, n = 12,). Points show mean + SEM; **, p < 0.01
(ANOVA + Scheffé).

the TRPV1 gene is deleted, and it is sensitized by pre-
treatment with the weak TRPV1/2/3 agonist 2-APB
which is ineffective in TRPV1 knockouts [54]. In the pre-
sent experiments, the heat stimulation caused about a
tenfold increase in CGRP release from cutaneous nerves
(p < 0.001, t-test). The basal CGRP release was unaffected
by the presence of PAR1-AP. The release in response to
heat was approximately doubled by exposure to the
PAR1-AP, consistent with expression of PAR1 in pepti-
dergic neurons.

Upregulation of PAR expression by neurotrophins
Fig. 8 examines the effect of exposure to neurotrophic
factors on expression of functional PAR1/4 receptors,
measured from PKCe translocation following exposure
to thrombin. NGF and neurturin (NTN) applied indivi-
dually significantly increased the number of thrombin-
responsive small neurons, while the effects of NGF and
NTN applied together were additive, consistent with the
known expression of TrkA and Ret receptors in separate
neuronal populations (Fig. 8A). In the absence of neuro-
trophins few thrombin-responsive neurons bind IB4
(first bar in Fig. 8A). NGF increased the proportion of
thrombin-responsive neurons but IB4 binding was not
significantly increased. NTN, on the other hand, signifi-
cantly upregulated the proportion of the thrombin-
responsive population stained by IB4.

In neurons from PAR1”/" animals the proportion
showing PKCeg translocation was significantly reduced
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Figure 8 Upregulation of proportion of thrombin-responsive
cells by neurotrophic factors. A. Percentage of neurons in which
PKCe translocation was observed following exposure to thrombin
(100 nM, 30 s) (white bars) was increased significantly by NGF
(100 ng/ml, 3 days, p < 0.05) and by neurturin (NTN, 50 ng/ml,
3 days, P < 0.01). Effects were partially additive (final bar). Grey bars
show percentage of neurons that were 1B4*; neurturin caused
significant upregulation of expression of thrombin responsiveness in
the IB4™ population but NGF had no significant effect. *; p < 0.05;
** p < 001 compared to control. B. Deletion of PAR1 reduces but
does not eliminate responsiveness to thrombin. C. Deletion of PAR2
does not affect proportion of neurons responsive to thrombin.

but was not zero (Fig. 8B), consistent with an action of
thrombin on PAR4 as discussed above. The fraction of
responsive neurons was upregulated by NGF and NTN.
In neurons from PAR2”" animals the proportion of neu-
rons activated by thrombin, and the effects of NGF and
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NTN in upregulating the proportion of thrombin-
responsive neurons, were similar to wild-type neurons
(Fig. 8C), confirming that PAR2 receptors are not
involved in responses to thrombin.

Discussion

The work described here demonstrates a previously
unsuspected role for PAR1 and PAR4 protease-activated
receptors in nociceptive neurones. We used both histolo-
gical and functional expression studies to explore the
expression of PAR receptors in sensory neurons. For
many of the functional studies we used thrombin, a pro-
tease which activates PAR1, 3 and 4 but not PAR2 recep-
tors. In initial studies we used neurons from mice and
rats, and from both adult and neonatal animals, in order
to gain an understanding of how responses to PAR ago-
nists differ across species and at different ages. In fact
there were few significant differences (see Table 3) and
we therefore focussed on adult mice in the majority of
experiments in order to compare our results with those
from PAR knockout animals.

We find clear evidence for expression of PAR1/4 recep-
tors in a population of peptide-expressing, IB4-negative
nociceptive neurones, where they couple to PKCg, cause
sensitization of TRPV1 and promote the heat-dependent
release of the pro-inflammatory neuropeptide CGRP.
These observations suggest a role for PAR1/4 receptors
in promoting inflammation and pain following the
release of thrombin. Functional PAR1/4 receptors are
also found in a fration of large diameter neurones which
express neurofilament H and would therefore in vivo
subtend myelinated fibres. Only a small minority of these
NFH" neurons express TRPV1 (Fig. 6B), suggesting that
most serve a non-nociceptive function.
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PAR1

PAR 1 is expressed in around 15% of primary sensory
neurons from adult mice. Consistent data were obtained
from in situ hybridisation (15%, Fig. 1C), from immuno-
histochemistry (10%, Fig. 1D), in functional studies from
sensitization of the capsaicin response (15%, Fig. 3G)
and from translocation of PKCe (15.6%, Fig. 5B). These
measures also showed that PAR1/4 expression was dis-
tributed approximately equally across all neuronal size
classes (Fig. 1 and Fig. 5D). In agreement with this,
approximately half of the neurons responding to throm-
bin were positive for neurofilament H, a marker for lar-
ger neurons subtending myelinated fibres (Fig. 6B).
Most of the remainder of the thrombin-responsive neu-
rons (c. one third of the total) were small and expressed
functional TRPV1, TRPA1 and prokineticin and brady-
kinin B2 receptors (Fig. 2) and contained neuropeptides
(Fig. 6B), all of which are characteristic of the small and
medium-sized nociceptive neuronal population. The
myelinated-fibre and nociceptor PAR1-expressing popu-
lations are mostly distinct, because only a small fraction
of neurons expressing neurofilament H also express
TRPV1 (Fig. 6B). Thus the PAR1-expressing neuronal
population can be divided in broad terms into two func-
tionally distinct classes: myelinated-fibre neurons, most
of which do not express TRPV1; and unmyelinated-fibre
neurons expressing neuropeptides, TRPV1 and other
markers for nociceptors. Dai et al [16] found that PAR1
was not co-expressed with TRPV1 and therefore would
not be expected to play a role in nociception, but in the
present study we find by using several independent
approaches that there is strong evidence for co-expres-
sion of functional PAR1 receptors and TRPV1 in the
peptidergic subset of small and medium-sized neurones.

Table 3 Summary of characteristics of DRG neurons from adult and neonatal mice and rats

Adult mouse  Neonatal mouse Adult rat Neonatal rat
% of THR-reponsive neurons (Ca imaging) 17.5 15.2 14.5 19.2
% of THR-reponsive neurons (PKCg translocation) 194 + 1.2 175+ 15 134 + 24 178 =10
% of THR-responsive neurons which are IB4+ 09+ 0,1% 1,0 + 0,5% 0 0
% of THR-responsive neurons responsive to PAR2-AP (Ca imaging) 0 0 0 0
THR sensitizes TRPV1 (Ca imaging) yes yes yes yes
PAR1-AP and PAR4-AP sensitize TRPV1 (patch clamp) yes - - yes
Segregation between PAR1 and PAR2 responsiveness (Ca imaging) yes yes yes yes
Neurons responsive to thrombin from day 1 in vitro yes yes yes yes
Upregulation by NTN of thrombin-responsiveness (PKCs translocation) yes yes yes yes
% of neurones responding to PAR2-AP expressing TRPV1 (Ca imaging) 778 + 94 91,0 £ 49 877 £6,2 88.6 + 5.1%
% of neurones responding to PAR2-AP which are IB4+ (Ca imaging) 81.1 £83 818+ 50 - 825 + 6.0%
% of THR-responsive non-neuronal cells in DRG cultures 57,5+ 56% 62,5 £ 9,9% 379 + 7,0% 554 + 34%
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Several observations show that functional PAR1 and
PAR4 receptors are not expressed in the non-peptidergic,
IB4-positive class of nociceptors. Few thrombin-respon-
sive neurons were IB4-positive (Fig. 2 and Fig. 6B), and
small thrombin-responsive neurons express the neuro-
peptides CGRP and SP (Fig. 6) which are known not to
be colocalized with IB4 binding. Finally, exposure to
NGF increases the fraction of thrombin-responsive
neurons (Fig. 8A), implying the presence of functional
TrkA receptors, which are known to be expressed in the
IB4" population.

One important functional consequence of PAR1/4
activation in nociceptive neurons is that both receptors
can sensitize the heat and capsaicin receptor, TRPV1,
which in vivo has been shown to produce a state of heat
hyperalgesia [55]. The membrane current carried by
TRPV1 in response to either heat or capsaicin was
approximately doubled in responsive neurons following
exposure to thrombin or PAR1 and PAR4 activator pep-
tides (Fig. 4). PAR receptors couple to Gg, leading to
activation of protein kinase C [5] which has in turn
been shown to phosphorylate and sensitize TRPV1, as
reviewed in [49]. Most of the sensitization of TRPV1 by
PAR1 is abolished by PKC inhibitors (Fig. 3B), showing
that phosphorylation by PKC is also the main pathway
important in sensitization of TRPV1 by PAR1/4.

The sensitization of TRPV1 by thrombin, together with
the observation that CGRP is expressed in the thrombin-
responsive nociceptor population, suggests that the
CGRP release activated by heat should be enhanced by
PAR1 activation. This prediction was borne out in
experiments performed on isolated rat skin containing
intact peptidergic nerve terminals; the heat-dependent
CGRP release was strongly potentiated by PAR1 activa-
tion (Fig. 6). The implication of this experiment is that
PARI activation should play a role in potentiating neuro-
genic inflammation, in which neuropeptides such as
CGRP are released from nociceptive nerve terminals fol-
lowing noxious insults or cell damage.

PAR2

The role of PAR2 in sensory neurones has been
explored fully in studies from other labs and was exam-
ined in less depth in the present study than that of
PAR1/4. In situ hybridization (Fig. 1) showed that PAR2
is expressed almost exclusively in the small neuronal
population, the majority of which are nociceptors, as
was found by Amadesi et al [17]. In agreement with
this, c. 80% of PAR2-AP responsive neurones expressed
functional TRPV1 and TRPA1 ion channels (Fig. 2B).
One surprise, though, in view of previous studies impli-
cating PAR2 in neuropeptide release [13,15] was that
the large majority of neurones in which PAR2-AP eli-
cited a calcium signal were IB4-positive, and therefore
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belong to a population which is predominantly non-
peptidergic (Fig. 2B).

PAR3

PAR3 was strongly expressed, mainly in small neurones
(Fig. 1). The percentages of neurones expressing PAR3
determined by in situ hybridization and immunohisto-
chemistry were in good agreement (49% and 42%,
respectively). However, when thrombin or trypsin, both
of which activate PAR3 along with PAR1/4, were used
in a number of different studies of functional expression,
responses were seen in a significantly smaller proportion
of neurones than those suggested by histological data
for PAR3. Desensitization of PAR1/4, which should
leave PAR3 unaffected, in fact largely ablated the
response to thrombin (Fig. 3). Thus PAR3 must either
be non-functional in sensory neurones, or else is only
able to act in concert with other PAR receptors, as has
been noted in other studies [see 47;48].

PAR4

PAR4 expression, like PAR1, was found by in situ hybri-
dization to be broadly distributed across all neuronal
sizes (Fig. 1). There is clear evidence for a functional
role for PAR4 in sensory neurons. PAR4-AP was found
in patch clamp experiments to cause a sensitization of
TRPV1 as potent as that of PAR1-AP, although in fewer
neurons, and in calcium imaging experiments the per-
centage of cells sensitized by thrombin was reduced by
less than half, from 15% to 8%, by genetic deletion of
PAR1 (Fig. 4). Consistent with this, PAR1-AP caused
translocation of PKCe in c¢. 15% of neurons, while
PAR4-AP caused translocation in 9% (Fig. 5). PAR4 is
expressed only in PAR1-expressing neurons, because all
neurons responding to PAR4-AP also responded to
PAR1-AP (Fig. 3). PAR2, by contrast, is expressed in a
distinct neuronal subpopulation (Fig. 2B,D).

Upregulation of PAR expression by neurotrophins

Neurotrophins enhance the sensation of pain partly by
upregulating a wide variety of proteins important in noci-
ception. We have shown that both NGF and neurturin
upregulate thrombin-responsiveness in sensory neurones
(Fig. 7). The increase in responsiveness was seen as an
increase in the number of neurons expressing functional
PAR1/4 receptors in response to a maximal dose of
thrombin, suggesting the de novo appearance of func-
tional receptors in neurons that previously did not
express them, rather than sensitization of existing recep-
tors. The action is on the small neurone population
(Additional file 2), in agreement with the known expres-
sion of both TrkA and Ret in small nociceptive neurons.
The results are consistent with an action of the two neu-
rotrophins on separate neuronal populations, however,
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because NGF does not increase the few IB4" neurones
which respond to thrombin, while NTN does increase
the number of these IB4" neurons, consistent with the
idea that NGF unregulates the number of PAR1/4
expressing neurons in the peptidergic population, while
NTN induces de novo expression of PAR1/4 receptors in
the IB4™ neuronal population.

Functional implications

Activation of PAR2 receptors is well known to cause
inflammation [19] but a role for PAR1 and 4 is less
clear. Previous studies have shown that PAR1/4 activa-
tion has a dual role: low doses are antinociceptive, while
higher levels cause inflammation and pain [3,28,56,57].
The finding in the present study that PAR1/4 receptors
are expressed in two distinct populations of sensory
neurons suggests a possible basis for this dual effect.
Activation of large-diameter myelinated afferents is well
known to have an antinociceptive effect, and the activa-
tion of PAR1/4 in these afferents could therefore have
an analgesic action. The expression of PAR1/4 in small-
diameter nociceptive afferents, on the other hand, where
they can potentiate TRPV1 and enhance the release of
neuropeptides, provides a ready explanation for the
inflammatory effects of higher levels of thrombin and
specific PAR1/4 agonists. Following injury and rupture
of blood vessels the release of significant amounts of
thrombin could act on nociceptive nerve terminals, sen-
sitizing TRPV1 to heat stimuli and promoting the
release of pro-inflammatory neuropeptides such as
CGRP, as has been shown in this study. Thus we pro-
pose that higher levels of thrombin can act in a similar
way to other better-studied pro-inflammatory mediators,
in promoting neurogenic inflammation and heat hyper-
algesia in injured tissues through the sensitization of
TRPVI.

Conclusions

In summary, we find clear evidence for co-expression of
functional PAR1 and PAR4 receptors in a sub-popula-
tion of small peptide-expressing nociceptive neurones,
where they couple to PKCg, cause sensitization of
TRPV1 and promote the heat-dependent release of the
pro-inflammatory neuropeptide CGRP. This study there-
fore suggests a previously unsuspected role for PAR1
and PAR4 in mediating the inflammation and pain
caused by tissue damage severe enough to rupture blood
vessels. Functional PAR1/4 receptors are also expressed
in large diameter myelinated-fibre neurones which do
not express TRPV1 and are therefore likely to be non-
nociceptive. The role of PAR1/4 in these non-nocicep-
tive neurones is less clear, but they may be responsible
for the antinociceptive effects of low concentrations of
thrombin.
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Additional material

Additional file 1: Thrombin sensitizes TRPV1 in sensory neurons.

Additional file 2: Upregulation by neurotrophic factors of PAR
receptors.
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