62 research outputs found

    Calpain cleavage and subcellular characterisation of the ferlin family.

    Get PDF
    The ferlins are a family of C2-domain containing proteins. C2 domains regulate vesicle fusion in synaptotagmins, and animal models of ferlin deficiency display pathologies related to Ca2+-dependent vesicle fusion. Dysferlin mutations cause limb-girdle muscular dystrophy due to defective membrane repair. Our group has previously shown that Ca2+-dependent proteases, calpains, cleave dysferlin following membrane injury, releasing mini-dysferlinC72, that we hypothesise mediates membrane repair. Otoferlin mutations cause non-syndromic deafness, while no pathology causing mutations have been identified in other ferlins. My project establishes that dysferlin and myoferlin, type-I ferlins, are present at the plasma membrane and endo-lysosomal pathway while otoferlin and Fer1L6, type-II ferlins, are present at the plasma membrane and recycling trans-Golgi compartments. I also show that dysferlin is cleaved to mini-dysferlinC72 following injury in all cell types by the ubiquitous calpains-1 and -2 in the alternatively spliced exon 40a, indicating dysferlin cleavage is a fundamental response to membrane injury. Exon 40a-containing dysferlin recruits to sites of membrane injury in myotubes, indicating mini-dysferlinC72 may function directly at sites of injury. Finally, I have shown that calpains also cleave otoferlin and myoferlin. Cleavage of other ferlins indicates ferlin cleavage is an evolutionarily conserved event, predating the split between type-I and type-II ferlins

    Impacts of birds of prey on gamebirds in the UK: a review

    Get PDF
    The influence of predators on the distribution, density and dynamics of their prey species has long been of interest to ecologists and wildlife managers. Where the prey population is also utilised by humans, conflicts may arise through competition for a limited resource. Because gamebird shooting in the UK provides employment, recreation and income, the impact of birds of prey on gamebird populations has been the subject of intense debate for many years. A variety of approaches has been used to assess the impacts that raptors have on gamebird populations. Here we review the applicability and limitations of the methods used and assess the scientific evidence for population-level and economic impacts of raptors on gamebird populations in the UK. Raptors may, in some situations, take large numbers of gamebirds and may be an important proximate cause of mortality, although few studies have assressed the impacts of raptors on either breeding or pre-shooting densities. Two exceptions are studies of Hen Harrier and Peregrine predation on Red Grouse on moorland in Scotland and Sparrowhawk predation on Grey Partridge on farmland in England. Both these studies suggested that raptors could have population-level impacts when their gamebird prey was already at low density. Studies on predation of captively bred gamebirds suggest that numbers taken by raptors at release pens vary considerably and in a few cases raptors have been documented killing relatively large numbers. On the whole, however, it appears that raptors account for a relatively small proportion of mortality among released birds and the impact on subsequent shooting bags is unknown. We summarise important gaps in current knowledge and recommend specific areas for future research

    Scenarios of habitat management options to reduce predator impacts on nesting waders

    Get PDF
    1. Wetland ecosystems throughout the world are threatened by drainage and intensification of agriculture. Consequently, many wetland species of conservation concern are now restricted to fewer and smaller sites, and maintaining these species often requires intensive habitat management.  2. In Western Europe, breeding wader populations have declined severely as a result of wetland degradation, but very high levels of predation on eggs and chicks are now preventing population recovery. Wet grassland management for breeding waders has focussed on providing suitable nesting habitats, but the potential for management of landscape features to influence predation rates is largely unknown.  3. Using a 7-year study of breeding lapwing, Vanellus vanellus, and redshank, Tringa totanus, we first identify features that influence nest predation, and then use this information to compare the magnitude of change in nest predation rates that could potentially result from future landscape management scenarios.  4. As lapwing nest predation rates are higher (a) in fields further from patches of tall vegetation, (b) close (<50 m) to field edges in wet fields, (c) further from field edges in dry fields and (d) in areas of low lapwing nesting density, we modelled a series of realistic scenarios in which the area of tall vegetation and the extent and distribution of surface water were varied across the reserve, in order to quantify the magnitude of change in nest predation rate that could potentially have been achieved through management.  5. Modelled scenarios of changes in surface water and area of tall vegetation indicated that reduced surface flooding combined with removal of tall vegetation could result in significant increases in lapwing nest predation rates in areas with low nesting densities and nests in field centres. By contrast a ~20% reduction in nest predation, corresponding to ~100 more chicks hatching per year, is predicted in scenarios with expansion of tall vegetation in areas with high lapwing nest density and nests close to field edges.  6. Synthesis and applications: These management scenarios suggest that, for breeding waders in wet grassland landscapes, creating areas of tall vegetation and concentrating surface flooding (to encourage high nesting densities and influence nesting distribution) can potentially help to reduce the unsustainably high levels of nest predation that are preventing population recovery

    Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation

    Get PDF
    A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke

    Membrane Heterogeneity Controls Cellular Endocytic Trafficking

    No full text
    Endocytic trafficking relies on highly localized events in cell membranes. Endocytosis involves the gathering of protein (cargo/receptor) at distinct plasma membrane locations defined by specific lipid and protein compositions. Simultaneously, the molecular machinery that drives invagination and eventually scission of the endocytic vesicle assembles at the very same place on the inner leaflet of the membrane. It is membrane heterogeneity – the existence of specific lipid and protein domains in localized regions of membranes – that creates the distinct molecular identity required for an endocytic event to occur precisely when and where it is required rather than at some random location within the plasma membrane. Accumulating evidence leads us to believe that the trafficking fate of internalized proteins is sealed following endocytosis, as this distinct membrane identity is preserved through the endocytic pathway, upon fusion of endocytic vesicles with early and sorting endosomes. In fact, just like at the plasma membrane, multiple domains coexist at the surface of these endosomes, regulating local membrane tubulation, fission and sorting to recycling pathways or to the trans-Golgi network via late endosomes. From here, membrane heterogeneity ensures that fusion events between intracellular vesicles and larger compartments are spatially regulated to promote the transport of cargoes to their intracellular destination.publishe

    Quantitative visualization of endocytic trafficking through photoactivation of fluorescent proteins

    No full text
    Endocytic trafficking controls the density of molecules at the plasma membrane and by doing so, the cell surface profile, which in turn determines how cells interact with their environment. A full apprehension of any cellular process necessitates understanding how proteins associated with the plasma membrane are endocytosed, how they are sorted after internalization, and if and how they are recycled to the plasma membrane. To date, it is still difficult to experimentally gain access to this information, even more to do it in a quantitative way. Here we present a toolset based on photoactivation of fluorescent proteins that enabled us to generate quantitative information on endocytosis, incorporation into sorting and recycling endosomes, delivery from endosomes to the plasma membrane, and on the type of vesicles performing intracellular transport. We illustrate these approaches by revealing striking differences in the endocytic trafficking of T-cell receptor and CD4, which bind to the same molecule at the surface of antigen-presenting cells during T-cell activation.publishe
    • …
    corecore