516 research outputs found

    Microstructural characterization of creep anisotropy at 673K in the M5Âź alloy

    Get PDF
    Zirconium alloy tubing is used in pressurized water nuclear reactors in order to prevent fissile material from leaking into the coolant. It can be the first safety wall of nuclear fuel, and is submitted to complex thermomechanical loadings. In consequence, new Nb-modified alloys, such as the M5 alloy, and fine numerical models are being developed to guarantee a better and longer mechanical integrity of these tubes. To identify the physical mechanisms that could be considered in such models, an experimental approach, combining creep tests with electron backscattered diffraction and Transmission electron microscopy investigations, was carried out. Tubular specimens were submitted to multiaxial creep tests at a temperature of 673 K. Seven ratios between the axial and hoop applied stresses were investigated. It enabled a macroscopic evidence of the creep anisotropy. Besides, EBSD analyses on a mesoscopic- sized non deformed area led to the characterization of the variation of the average Schmid factor with the direction of loading. Finally,TEM observations were done on seven crept samples, corresponding to the seven directions of loading tested mechanically. The variations of the different parameters investigated (activated slip systems, dislocation densities, curvatures of the dislocations) can be seen as the effects of the creep anisotropy at a microscopic scale. The correlation between results is then discussed in a multiscale frame

    Driving Robot for Reproducible Testing: A Novel Combination of Pedal and Steering Robot on a Steerable Vehicle Test Bench

    Get PDF
    Shorter development times, increased standards for vehicle emissions and a greater number of vehicle variants result in a higher level of complexity in the vehicle development process. Efficient development of powertrain and driver assistance functions under comparable and reproducible operating conditions is possible on vehicle test benches. Yet, the realistic simulation of real driving environments on test benches is a challenge. Current test procedures and new technologies, such as Real Driving Emission tests and Autonomous Driving, require a reproducible and even more detailed simulation of the driving environment. Due to this, the simulation of curve driving in particular is gaining in importance. This results from its significant influence on energy consumption and Autonomous Driving functions with lateral guidance, such as lane departure and evasion assistance. Reproducibility can be additionally increased by using a driving robot. At today’s vehicle test benches, pedal and shift robots are predominantly used for longitudinal dynamic tests in the performed test procedures. In order to meet these new test automation requirements for vehicle test benches, the cooperative operation of pedal and steering robots is needed on a test bench setup suitable for this purpose. In this publication, the authors present the setup of a vehicle test bench to be used in automated and reproducible vehicle-in-the-loop tests during steering events. The focus is on the test-bench-specific setup with steerable front wheels, the actuators for simulating the wheel steering torque around the steering axle and the robots used for pedals and steering wheel. Results from various test series are presented and the potential of the novel test environment is shown. The results are reproducible in various test series due to the closed-loop operation without human driving influences at the test bench

    Optimal sensor placement: A robust approach

    Get PDF
    We address the problem of optimally placing sensor networks for convection-diffusion processes where the convective part is perturbed. The problem is formulated as an optimal control problem where the integral Riccati equation is a constraint and the design variables are sensor locations. The objective functional involves a term associated to the trace of the solution to the Riccati equation and a term given by a constrained optimization problem for the directional derivative of the previous quantity over a set of admissible perturbations. The paper addresses the existence of the derivative with respect to the convective part of the solution to the Riccati equation, the well-posedness of the optimization problem and finalizes with a range of numerical tests

    Dislocation mechanisms in a zirconium alloy in the high-temperature regime: An in situ TEM investigation

    Get PDF
    Dislocation mechanisms responsible for the high-temperature mechanical properties of a Zr alloy have been investigated using in situ straining experiments between 250 °C and 450 °C. At 250 °C and 300 °C, the results show a steady and homogeneous dislocation motion in prismatic planes, with little cross-slip in the pyramidal and/or basal planes. At 350 °C, the kinetics of mobile dislocations becomes very jerky and inhomogeneous, in agreement with a dynamic strain aging mechanism. Above this temperature, the motion is again steady and homogeneous. Extensive cross-slip forms super-jogs which are efficient pinning points against the glide motion. These super-jogs move by glide along the Burgers vector direction, never by climb. The glide velocity between super-jogs is linear as a function of the total driving stress (applied stress minus line-tension stress due to dislocation curvature), in agreement with the solute dragging mechanism. The origin of the stress–strain rate dependence with an exponent larger than unity is then discussed

    Electrified Powertrain Development: Distributed Co-Simulation Protocol Extension for Coupled Test Bench Operations

    Get PDF
    The increasingly stringent CO2 emissions standards require innovative solutions in the vehicle development process. One possibility to reduce CO2 emissions is the electrification of powertrains. The resulting increased complexity, as well as the increased competition and time pressure make the use of simulation software and test benches indispensable in the early development phases. This publication therefore presents a methodology for test bench coupling to enable early testing of electrified powertrains. For this purpose, an internal combustion engine test bench and an electric motor test bench are virtually interconnected. By applying and extending the Distributed Co-Simulation Protocol Standard for the presented hybrid electric powertrain use case, real-time-capable communication between the two test benches is achieved. Insights into the test bench setups, and the communication between the test benches and the protocol extension, especially with regard to temperature measurements, enable the extension to be applied to other powertrain or test bench configurations. The shown results from coupled test bench operations emphasize the applicability. The discussed experiences from the test bench coupling experiments complete the insights

    Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Get PDF
    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data

    Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA

    Get PDF
    Differential inclusive jet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector. Three phase-space regions have been selected in order to study parton dynamics where the effects of BFKL evolution might be present. The measurements have been compared to the predictions of leading-logarithm parton shower Monte Carlo models and fixed-order perturbative QCD calculations. In the forward region, QCD calculations at order alpha_s^1 underestimate the data up to an order of magnitude at low x. An improved description of the data in this region is obtained by including QCD corrections at order alpha_s^2, which account for the lowest-order t-channel gluon-exchange diagrams, highlighting the importance of such terms in parton dynamics at low x.Comment: 25 pages, 4 figure

    Search for lepton-flavor violation at HERA

    Get PDF
    A search for lepton-flavor-violating interactions ep→ΌXe p \to \mu X and ep→τXe p\to \tau X has been performed with the ZEUS detector using the entire HERA I data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data were taken at center-of-mass energies, s\sqrt{s}, of 300 and 318 GeV. No evidence of lepton-flavor violation was found, and constraints were derived on leptoquarks (LQs) that could mediate such interactions. For LQ masses below s\sqrt{s}, limits were set on λeq1ÎČℓq\lambda_{eq_1} \sqrt{\beta_{\ell q}}, where λeq1\lambda_{eq_1} is the coupling of the LQ to an electron and a first-generation quark q1q_1, and ÎČℓq\beta_{\ell q} is the branching ratio of the LQ to the final-state lepton ℓ\ell (ÎŒ\mu or τ\tau) and a quark qq. For LQ masses much larger than s\sqrt{s}, limits were set on the four-fermion interaction term λeqαλℓqÎČ/MLQ2\lambda_{e q_\alpha} \lambda_{\ell q_\beta} / M_{\mathrm{LQ}}^2 for LQs that couple to an electron and a quark qαq_\alpha and to a lepton ℓ\ell and a quark qÎČq_\beta, where α\alpha and ÎČ\beta are quark generation indices. Some of the limits are also applicable to lepton-flavor-violating processes mediated by squarks in RR-Parity-violating supersymmetric models. In some cases, especially when a higher-generation quark is involved and for the process ep→τXe p\to \tau X , the ZEUS limits are the most stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig. 6) adde
    • 

    corecore