16 research outputs found

    Inhibition of Both HIV-1 Reverse Transcription and Gene Expression by a Cyclic Peptide that Binds the Tat-Transactivating Response Element (TAR) RNA

    Get PDF
    The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC50 ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (−) strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism

    HIV-1 Entry, Inhibitors, and Resistance

    Get PDF
    Entry inhibitors represent a new class of antiretroviral agents for the treatment of infection with HIV-1. While resistance to other HIV drug classes has been well described, resistance to this new class is still ill defined despite considerable clinical use. Several potential mechanisms have been proposed: tropism switching (utilization of CXCR4 instead of CCR5 for entry), increased affinity for the coreceptor, increased rate of virus entry into host cells, and utilization of inhibitor-bound receptor for entry. In this review we will address the development of attachment, fusion, and coreceptor entry inhibitors and explore recent studies describing potential mechanisms of resistance

    Neutrino Masses, Mixing, and Oscillations

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,873 new measurements from 758 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 118 reviews are many that are new or heavily revised, including a new review on Neutrinos in Cosmology. Starting with this edition, the Review is divided into two volumes. Volume 1 includes the Summary Tables and all review articles. Volume 2 consists of the Particle Listings. Review articles that were previously part of the Listings are now included in volume 1. The complete Review (both volumes) is published online on the website of the Particle Data Group (http://pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is also available. The 2018 edition of the Review of Particle Physics should be cited as: M. Tanabashi (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

    Abstract A diffusion model account of normal and impaired readers

    No full text
    Acquired aphasics and dyslexics with even very profound word reading impairments have been shown to perform relatively well on the lexical decision task (e.g., Buchanan, Hildebrandt, & MacKinnon, 1999), but direct contrasts with unimpaired participantÕs data is often complicated by extremely long reaction times for patient data. The dissociation between lexical decision and word naming performance shown by these patients is of theoretical importance, and here we present an analysis of processing underlying the lexical decision task. We are able to determine what aspects of performance are affected by acquired aphasics in the lexical decision task. We fit lexical decision data from aphasic patients and from normal readers with a sequential sampling model (the diffusion model; Ratcliff, 1978; Ratcliff, Van Zandt, & McKoon, 1999) that simultaneously considers reaction time and accuracy. This model provides a powerful means of assessing processes involved in impaired and unimpaired lexical decision. Our results suggest that lexical decision may tap impairments at both a linguistic and a nonlinguistic level. These impairments combine to make patients produce the exaggerated lexical decision reaction times typical of neurolinguistic patients: we demonstrate that patients have compromised decision and nondecision processes but that the quality of the information upon which they base their decisions is not much different from that of unimpaired participants. Ó 2004 Elsevier Inc. All rights reserved. 1

    HIV-1 Group O Genotypes and Phenotypes: Relationship to Fitness and Susceptibility to Antiretroviral Drugs

    No full text
    Despite only 30,000 group O HIV-1 infections, a similar genetic diversity is observed among the O subgroups H (head) and T (tail) (previously described as subtypes A, B) as in the 9 group M subtypes (A–K). Group O isolates bearing a cysteine at reverse transcriptase (RT) position 181, predominantly the H strains are intrinsically resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs). However, their susceptibility to newer antiretroviral drugs such as etravirine, maraviroc, raltegravir (RAL), and elvitegravir (EVG) remains relatively unknown. We tested a large collection of HIV-1 group O strains for their susceptibility to four classes of antiretroviral drugs namely nucleoside RT, non-nucleoside RT, integrase, and entry inhibitors knowing in advance the intrinsic resistance to NNRTIs. Drug target regions were sequenced to determine various polymorphisms and were phylogenetically analyzed. Replication kinetics and fitness assays were performed in U87-CD4(+)CCR5 and CXCR4 cells and peripheral blood mononuclear cells. With all antiretroviral drugs, group O HIV-1 showed higher variability in IC(50) values than group M HIV-1. The mean IC(50) values for entry and nucleoside reverse transcriptase inhibitor (NRTI) were similar for group O and M HIV-1 isolates. Despite similar susceptibility to maraviroc, the various phenotypic algorithms failed to predict CXCR4 usage based on the V3 Env sequences of group O HIV-1 isolates. Decreased sensitivity of group O HIV-1 to integrase or NNRTIs had no relation to replicative fitness. Group O HIV-1 isolates were 10-fold less sensitive to EVG inhibition than group M HIV-1. These findings suggest that in regions where HIV-1 group O is endemic, first line treatment regimens combining two NRTIs with RAL may provide more sustained virologic responses than the standard regimens involving an NNRTI or protease inhibitors

    Cellular fatty acid synthase is required for late stages of HIV-1 replication

    No full text
    Abstract Background Like all viruses, HIV-1 relies on host systems to replicate. The human purinome consists of approximately two thousand proteins that bind and use purines such as ATP, NADH, and NADPH. By virtue of their purine binding pockets, purinome proteins are highly druggable, and many existing drugs target purine-using enzymes. Leveraging a protein affinity media that uses the purine-binding pocket to capture the entire purinome, we sought to define purine-binding proteins regulated by HIV-1 infection. Results Using purinome capture media, we observed that HIV-1 infection increases intracellular levels of fatty acid synthase (FASN), a NADPH-using enzyme critical to the synthesis of de novo fatty acids. siRNA mediated knockdown of FASN reduced HIV-1 particle production by 80%, and treatment of tissue culture cells or primary PBMCs with Fasnall, a newly described selective FASN inhibitor, reduced HIV-1 virion production by 90% (EC50 = 213 nM). Despite the requirement of FASN for nascent virion production, FASN activity was not required for intracellular Gag protein production, indicating that FASN dependent de novo fatty acid biosynthesis contributes to a late step of HIV-1 replication. Conclusions Here we show that HIV-1 replication both increases FASN levels and requires host FASN activity. We also report that Fasnall, a novel FASN inhibitor that demonstrates anti-tumor activity in vivo, is a potent and efficacious antiviral, blocking HIV-1 replication in both tissue culture and primary cell models of HIV-1 replication. In adults, most fatty acids are obtained exogenously from the diet, thus making FASN a plausible candidate for pharmacological intervention. In conclusion, we hypothesize that FASN is a novel host dependency factor and that inhibition of FASN activity has the potential to be exploited as an antiretroviral strategy

    Enhancement of CD4 Binding, Host Cell Entry, and Sensitivity to CD4bs Antibody Inhibition Conferred by a Natural but Rare Polymorphism in the HIV-1 Envelope

    No full text
    A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.</p
    corecore