121 research outputs found

    Molecular and bulk geochemical proxies in sediments from the Conwy Estuary, UK

    Get PDF
    Owing to their restricted riverine flow and greater numbers, small estuaries (annual discharge < 2000 m3 s–1) are important sites of organic carbon (OC) storage in sediments. The Conwy Estuary is an exemplar small rural-agricultural catchment which delivers a diverse pool of terrestrial OC to the Irish Sea. Thirty-nine surface sediments, covering a distance of 10.5 km, were taken transversal as well as longitudinal to the estuary to examine local and distant catchment inputs. Biomarkers (branched Glycerol Dialkyl Glycerol Tetraethers - brGDGTs, n-alkanes) and molecular and bulk proxies (BIT, Paq, TAR, δ13C, C/N), showed sediments were dominated by terrestrial inputs, with only sediments of the three most seaward sites showing stronger physical and geochemical characteristics of a marine influence (e.g., sandier sediments and lower BIT). Biomarker concentrations in the Conwy were comparable to the more urbanised Thames and the Clyde estuaries. The three estuaries showed similar fractional abundance of the brGDGTs, recording an inverse trend between the hexamethylated and the tetramethylated brGDGTs, and showing the pentamethylated brGDGTs as the dominant group. A systematic decrease in terrestrial biomarkers from bank to the main channel confirmed either a strong localised erosion/runoff process or a decrease in water velocity leading to a higher deposition

    Contrasting sewage, emerging and persistent organic pollutants in sediment cores from the River Thames estuary, London, England, UK

    Get PDF
    Sedimentary organic pollution in the urban reaches of the Thames estuary is changing from fossil fuel hydrocarbons to emerging synthetic chemicals. De-industrialisation of London was assessed in three cores from Chiswick (Ait/Eyot) mud island using pharmaceuticals, faecal sterols, hydrocarbons (TPH, PAH), Black Carbon (BC) and organotins (TBT). These ranked in the order; BC 7590-30219 mg/kg, mean 16,000 mg/kg > TPH 770–4301, mean 1316 mg/kg > Σ16PAH 6.93–107.64, mean 36.46 mg/kg > coprostanol 0.0091–0.42 mg/kg, mean of 0.146 mg/kg > pharmaceuticals 2.4–84.8 μg/kg, mean 25 μg/kg. Hydrocarbons co-varied down-profile revealing rise (1940s), peak (1950s -1960s) and fall (1980s) and an overall 3 to 25-fold decrease. In contrast, antibiotics, anti-inflammatory (ibuprofen, paracetamol) and hormone (17β-estradiol) increased 3 to 50-fold toward surface paralleling increasing use (1970s-2018). The anti-epileptics, carbamazepine and epoxcarbamazepine showed appreciable down-core mobility. Faecal sterols confirmed non-systematic incorporation of treated sewage. Comparison to UK sediment quality guidelines indicate exceedance of AL2 for PAH whereas TBT was below AL1

    Linking land and lake: Using novel geochemical techniques to understand biological response to environmental change

    Get PDF
    The exploitation of lakes has led to large-scale contemporary impacts on freshwater systems, largely in response to catchment clearance. Such clearance is causing changes to carbon dynamics in tropical lakes which may have significance for wider carbon budgets, depending on the changes in carbon sequestration and mineralisation driven by changing roles of terrestrial and aquatic carbon in lakes over time. Despite increasing awareness of the pivotal role of carbon source in carbon dynamics, discriminating the source of carbon from a palaeolimnological record is rarely undertaken. Here we use novel geochemical techniques (brGDGTs, n-alkanes, Rock-Eval pyrolysis), paired with traditional analyses (diatoms, pollen), to elucidate changing sources of carbon through time and ecosystem response. Environmental changes at Lake Nyamogusingiri can be divided into three phases: Phase I (CE 1150-1275), a shallow and productive lake, where a diverse terrestrial environment is, initially, the main carbon source, before switching to an aquatic source; Phase II (CE 1275-1900), variable lake levels (generally in decline) with increasing productivity, and carbon is autochthonous in source; Phase III (CE 1900-2007), lake level declines, and the carbon is of a mixed source, though the terrestrially derived carbon is from a less diverse source. The organic geochemical analyses provide a wealth of data regarding the complexity of aquatic response to catchment and with-in lake changes. These data demonstrate show that small, tropical lake systems have the potential to bury high quantities of carbon, which has implications for the disruption of local biogeochemical cycles (C, P, N, and Si) both in the past, and the future as human and climate pressures increase

    Linking land and lake: using novel geochemical techniques to understand biological response to environmental change

    Get PDF
    The exploitation of lakes has led to large-scale contemporary impacts on freshwater systems, largely in response to catchment clearance. Such clearance is causing changes to carbon dynamics in tropical lakes which may have significance for wider carbon budgets, depending on the changes in carbon sequestration and mineralisation driven by changing roles of terrestrial and aquatic carbon in lakes over time. Despite increasing awareness of the pivotal role of carbon source in carbon dynamics, discriminating the source of carbon from a palaeolimnological record is rarely undertaken. Here we use novel geochemical techniques (brGDGTs, n-alkanes, Rock-Eval pyrolysis), paired with traditional analyses (diatoms, pollen), to elucidate changing sources of carbon through time and ecosystem response. Environmental changes at Lake Nyamogusingiri can be divided into three phases: Phase I (CE 1150–1275), a shallow and productive lake, where a diverse terrestrial environment is, initially, the main carbon source, before switching to an aquatic source; Phase II (CE 1275–1900), variable lake levels (generally in decline) with increasing productivity, and carbon is autochthonous in source; Phase III (CE 1900–2007), lake level declines, and the carbon is of a mixed source, though the terrestrially derived carbon is from a less diverse source. The organic geochemical analyses provide a wealth of data regarding the complexity of aquatic response to catchment and with-in lake changes. These data demonstrate that small, tropical lake systems have the potential to bury high quantities of carbon, which has implications for the disruption of local biogeochemical cycles (C, P, N, and Si) both in the past, and the future as human and climate pressures increase

    Impact of organic pollutants from urban slum informal settlements on sustainable development goals and river sediment quality, Nairobi, Kenya, Africa

    Get PDF
    The UN Sustainable Development Goals highlight the myriad of socio-economic and environmental challenges occurring as a result of anthropogenic chemical pollution. Urban sediments from informal settlements (slums) on the Nairobi, Ngong and Mathare Rivers (n = 25), were evaluated for sediment quality. Microtox bioassay identified 8 sites as toxic, 9 as moderately toxic and 8 as non-toxic. Slum sediments were characterised by high total organic carbon and Rock-Eval pyrolysis revealed bound carbon from a mix of raw sewage and domestic refuse. Sediments from Kiambio, Kibera, Mathare and Kawangware slums contained high coprostanol at 55–298 μg/g and epicoprostanol at 3.2–21.7 μg/g confirming appreciable incorporation of untreated human faeces. Hormones, antianalgeiscs, antiinflamatories, antiepileptics and antibiotics most affected Mathare > Kiambio > Kibera > Mukuru > Kawangware slums. Carbamazepine, ibuprofen, diclofenac and acetaminophen concentrations are amongst the highest reported in Kenyan river sediments and were positively correlated with faecal steroids (sewage). Common persistent organic pollutants, such as organochlorine insecticides ΣDDT 1–59 μg/kg, mean 21.2 μg/kg, Σ16PAH 182–2218 μg/kg, mean 822 μg/kg and Σ30 PCB 3.1–157.1 μg/kg, mean of 21.4 μg/kg were between probable effect likely and unlikely sediment quality guidelines (SQG). PAH source ratios and parent to alkyl-PAH distribution suggested vehicle exhaust, power stations (heavy oil), kerosene (cooking oil) and other pollution sources. Trace metal concentrations As, Cd, Cr, Hg and Ni were below SQG whereas Pb exceeded the SQG. This multi-contaminant characterisation of sediment quality in Nairobi supports the development and implementation of policies to improve urban infrastructure to protect ecological and human health. It demonstrates the need for environmental geochemists to engage in the science-policy interface associated with both global and national development frameworks, with particular reference to the Sustainable Development Goals, New Urban Agenda, and Kenya’s Vision 2030

    Persistent Organic Pollutants in Urban Soils of Central London, England, UK: Measurement and Spatial Modelling of Black Carbon (BC), Petroleum Hydrocarbons (TPH), Polycyclic Aromatic Hydrocarbons (PAH) and Polychlorinated Biphenyls (PCB)

    Get PDF
    Total organic carbon (TOC), black carbon (BC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) were determined in 73 surface (0-2 cm) and subsurface (5-20 cm) soil samples taken from a 142 km2 area in Central London, UK. Soils were assessed to provide a baseline chemistry for site owners, developers, occupiers and regulators involved in understanding the potential risk to human health and the environment. TOC range was 1.75-11.85 % (mean 5.82 %), BC 3.72-32.71 mg.g-1 (mean 13.8 mg.g-1), TPH 72-4673 mg.g-1 (mean 443 mg.g-1), Σ16PAH 1.64-421.23 mg.g-1 (mean 47.99 mg.g-1) and Σ7PCB 2.56-148.72 µg.kg-1 (mean 20.82 µg.kg-1). Surface soils were less polluted than sub-surface soils due to a decline in industry, power generation, coal burning and traffic. PAH and PCB showed a stronger affinity for BC than TOC and were higher than many other international cities. South east London (Greenwich, Woolwich, Deptford) had the highest PAH pollution. Source PAH ratios confirmed a combustion/urban road run-off origin with minor petroleum inputs. Random Forest spatial modelling (machine learning) revealed large scale pollution trends across London soils. Normal background concentrations (NBC) were calculated and compared to risk-based human health generic assessment criteria (GAC). Benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and dibenzo[a]anthracene exceeded the Land Quality Management GACs for three land uses (residential, allotments and public open space near residential housing). The NBC determined for ∑7PCBs (110 µg.kg-1) and dioxin-like PCB 118 (59 µg.kg-1) exceeded the residential and allotment soil guideline values

    Tracking Holocene palaeostratification and productivity changes in the Western Irish Sea: a multi-proxy record

    Get PDF
    The Western Irish Sea preserves an exceptionally thick (ca. 40 m) Holocene succession that is ideally suited to understanding the pattern of palaeostratification and water mass productivity changes in the region, and their relationship with sea level, sedimentation, and biota. Additionally, the presence of shallow-buried methane provides an opportunity to explore its potential impact on the local pattern of Holocene marine environmental change. Multi-proxy investigation of a cored borehole succession through the Holocene interval tracks changes from mixed to seasonally stratified conditions. In the earliest Holocene (11.2–10 ka), high productivity, mixed water conditions prevailed, with abundant and diverse foraminifera and dominant heterotrophic dinoflagellate cysts. Productivity was probably driven by high nutrient fluxes related to high rates of sedimentation (>1600 cm/kyr), in turn influenced by relatively low sea level and restricted sediment accommodation space across shelf areas to the east of the borehole site (eastern Irish Sea Basin). With rising sea level in the later part of the Early Holocene, the region evolved into a relatively lower productivity mixed water mass system, with significant changes in ecology revealed by dinoflagellate cysts and foraminifera. In the latest Early Holocene and earliest Mid Holocene (ca. 8.4–8.2 ka) a return to higher productivity is signalled by dinoflagellate cyst data; a result of seasonal stratification becoming established, evidenced by sharply increased summer sea surface temperature estimates (typically 16–17 °C) that contrast with an opposite (more positive) trend in δ18O values for benthic foraminifera. Reductions in turbulent mixing associated with stratification might have exacerbated the palaeoecological impact of shallow-buried methane associated with the borehole site, potentially evidenced by a significant change in dominant benthic foraminifera and strong, localised excursions in the benthic δ13C/δ18O record

    The last forests on Antarctica: Reconstructing flora and temperature from the Neogene Sirius Group, Transantarctic Mountains

    Get PDF
    Fossil-bearing deposits in the Transantarctic Mountains, Antarctica indicate that, despite the cold nature of the continent’s climate, a tundra ecosystem grew during periods of ice sheet retreat in the mid to late Neogene (17–2.5 Ma), 480 km from the South Pole. To date, palaeotemperature reconstruction has been based only on biological ranges, thereby calling for a geochemical approach to understanding continental climate and environment. There is contradictory evidence in the fossil record as to whether this flora was mixed angiosperm-conifer vegetation, or whether by this point conifers had disappeared from the continent. In order to address these questions, we have analysed, for the first time in sediments of this age, plant and bacterial biomarkers in terrestrial sediments from the Transantarctic Mountains to reconstruct past temperature and vegetation during a period of East Antarctic Ice Sheet retreat. From tetraether lipids (MBT’/CBT palaeothermometer), we conclude that the mean continental summer temperature was ca. 5 °C, in agreement with previous reconstructions. This was warm enough to have allowed woody vegetation to survive and reproduce even during the austral winter. Biomarkers from vascular plants indicate a low diversity and spatially variable flora consisting of higher plants, moss and algal mats growing in microenvironments in a glacial outwash system. Abietane-type compounds were abundant in some samples, indicating that conifers, most likely Podocarpaceae, grew on the Antarctic continent well into the Neogene. This is supported by the palynological record, but not the macrofossil record for the continent, and has implications for the evolution of vegetation on Antarctica

    A list of land plants of Parque Nacional do Caparaó, Brazil, highlights the presence of sampling gaps within this protected area

    Get PDF
    Brazilian protected areas are essential for plant conservation in the Atlantic Forest domain, one of the 36 global biodiversity hotspots. A major challenge for improving conservation actions is to know the plant richness, protected by these areas. Online databases offer an accessible way to build plant species lists and to provide relevant information about biodiversity. A list of land plants of “Parque Nacional do Caparaó” (PNC) was previously built using online databases and published on the website "Catálogo de Plantas das Unidades de Conservação do Brasil." Here, we provide and discuss additional information about plant species richness, endemism and conservation in the PNC that could not be included in the List. We documented 1,791 species of land plants as occurring in PNC, of which 63 are cited as threatened (CR, EN or VU) by the Brazilian National Red List, seven as data deficient (DD) and five as priorities for conservation. Fifity-one species were possible new ocurrences for ES and MG states
    corecore