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Abstract 

Total organic carbon (TOC), black carbon (BC), total petroleum hydrocarbons (TPH), 

polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) were 

determined in 73 surface (0-2 cm) and subsurface (5-20 cm) soil samples taken from a 142 

km2 area in Central London, UK. Soils were assessed to provide a baseline chemistry for site 

owners, developers, occupiers and regulators involved in understanding the potential risk to 

human health and the environment. TOC range was 1.75-11.85 % (mean 5.82 %), BC 3.72-

http://creativecommons.org/licenses/by/4.0/
mailto:chv@bgs.ac.uk
mailto:awk@bgs.ac.uk
mailto:darrenb@bgs.ac.uk
mailto:mrca@bgs.ac.uk
mailto:S.Lowe2@exeter.ac.uk
mailto:raquel@bgs.ac.uk
mailto:antonio@bgs.ac.uk
mailto:vlm@bgs.ac.uk
mailto:c.d.collins@reading.ac.uk
mailto:paul@lqm.co.uk
mailto:chv@bgs.ac.uk
https://www.lidsen.com/journals/aeer/aeer-special-issues/pops


Adv Environ Eng Res 2021; 2(2), doi:10.21926/aeer.2102011 

 

Page 2/42 

32.71 mg.g-1 (mean 13.8 mg.g-1), TPH 72-4673 mg.g-1 (mean 443 mg.g-1), Σ16PAH 1.64-421.23 

mg.g-1 (mean 47.99 mg.g-1) and Σ7PCB 2.56-148.72 µg.kg-1 (mean 20.82 µg.kg-1). Surface soils 

were less polluted than sub-surface soils due to a decline in industry, power generation, coal 

burning and traffic. PAH and PCB showed a stronger affinity for BC than TOC and were 

higher than many other international cities. South east London (Greenwich, Woolwich, 

Deptford) had the highest PAH pollution. Source PAH ratios confirmed a combustion/urban 

road run-off origin with minor petroleum inputs. Random Forest spatial modelling (machine 

learning) revealed large scale pollution trends across London soils. Normal background 

concentrations (NBC) were calculated and compared to risk-based human health generic 

assessment criteria (GAC). Benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and 

dibenzo[a]anthracene exceeded the Land Quality Management GACs for three land uses 

(residential, allotments and public open space near residential housing). The NBC 

determined for ∑7PCBs (110 µg.kg-1) and dioxin-like PCB 118 (59 µg.kg-1) exceeded the 

residential and allotment soil guideline values. 

Keywords 

Soil; Risk; health; city; urban, contamination; pollution; ecosystem; deprivation; 

benzo[a]pyrene 

 

1. Introduction 

The metropolitan area of London has a population of some 9 M people and is one of the 

world’s preeminent cities forming the cultural, economic and governmental hub of the UK. Over 

2000 years of human activity have resulted in the accumulation of organic pollutants in soil such 

as black carbon (BC), petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAH) 

from coal burning as well as receipt of combustion engine vehicle exhaust particulates. More 

recently, halogenated persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCB) 

have been unintentionally released into the environment and transferred into London’s surface 

soils and connected sediments of the River Thames [1-4]. Understanding the spatial and temporal 

distribution, input-sources and affinities of POPs is important as many are toxic, impact the 

nervous system or are carcinogenic to humans and wildlife. The presence of POPs in surface and 

near surface soils potentially constrains the extensive re-development of former industrial sites to 

housing alongside improvements to London’s environment via green-habitat creation, upgraded 

sewer and urban drainage infrastructure as well as enhanced regulation to improve air quality by 

2050 [5]. 

Petroleum hydrocarbons in urban soils originate from a variety of sources including road run-

off, crude and refined oils, refined petroleum as well as dusts and atmospheric particles from 

factories, incinerators and hydrocarbon fuelled power stations [6-8]. These inputs generate a 

continuum of simple to complex (monomers-molecular aggregates) that may include aliphatic, 

monoaromatic, polyaromatic hydrocarbons as well as heteroatom containing resins and higher 

molecular weight asphaltenes [9]. The precise mix of compound classes entering the environment 

varies according to oil genesis (basin-type, geological age) degree of refining 
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(distillation/conversion/finishing) and post environmental release weathering effects such as 

evaporation and dissolution and microbial alteration [9-11]. Owing to this wide range in molecular 

composition it is difficult to make assumptions about possible adverse environmental health 

effects. 

Polycyclic aromatic hydrocarbons (PAH) are detected in most urban soils where they occur as a 

consequence of anthropogenic activities such as road transport, domestic fires, oil refining, coke 

and asphalt manufacture, coal gas production, non-ferrous metal industries, municipal waste 

incineration and leaking storage/land-fills [12]. PAHs are associated with a variety of adverse 

human health effects including suppressing childhood IQ, respiratory health and cancer [6, 13, 14]. 

In the UK, atmospheric monitoring records for PAH (1970-2003) reveal a switch from residential 

coal burning, power stations and non-ferrous metal working to road transport (road-run off, 

vehicle exhaust particulates) [15]. Similarly, isomeric and non-isomeric parent PAH ratios as well 

as overall concentration patterns confirmed mainly combustion derived PAH (traffic and domestic 

burning) in near surface soils of 19km2 of south east London. Σ16 PAH concentrations ranged from 

4 to 67 mg.g-1 and mean 18 mg.g-1 which were broadly similar to some of the more polluted 

European cities [2]. These results were used to determine normal background concentrations 

(NBC) of surrogate marker PAH ((e.g. benzo[a]pyrene) for comparison against generic assessment 

criteria (GAC). The GAC providing a risk-based conservative estimate of the surrogate marker PAH 

concentrations in soil that represent no appreciable or minimal risk to human health assuming 

chronic exposure for a series of land use and exposure scenarios. 

Polychlorinated biphenyls (PCBs) were used in coolants, lubricants, transformer oils, sealants 

and calking agents from mid 1950s to late 1970s [16]. PCBs were prized for their low reactivity and 

high chemical and thermal stability. Their properties saw PCBs applied widely in sectors such as 

industry, transport and commerce, though it was these properties that contribute to their 

environmental persistence [17]. Peak production was reached in the 1960s before staged phase-

out in the late 1970s, following growing concern about their potential for harm and accumulation 

in the environment, and a global ban through the Stockholm Convention on Persistent Organic 

Pollutants in 2001[18]. It is in addition to this persistence and accumulative potential that health 

risks should be considered. PCBs have been found to possess endocrine disruptive qualities 

associated with developmental disorders in humans and other animals, and some congeners 

exhibit carcinogenicity. Risk from PCB exposure through multiple pathways can be significant. Soil 

represents the most significant environmental store of PCBs [16, 19, 20]. 

Spatial modelling and prediction for the purposes of illustrating the trends in 2D distribution of 

a contaminant in soil has traditionally been carried out using kriging related techniques [21, 22]. 

Recently, Hengl et al. [23] summarised the problems associated with kriging and demonstrated 

the use and advantages of a machine learning method (Random Forest, RF) for spatial modelling 

where buffer distances from observation points are used as explanatory variables. In other studies 

Kirkwood et al. [24] used an RF model with high resolution geophysics and remote sensed data as 

covariates to produce high resolution geochemical maps of South West England and Sekulić et al. 

[25] successfully demonstrated a similar RF approach using the nearest observations and their 

distances to the prediction location as covariates. In this study, we have used a RF approach [26] 

where inverse distance weighted (IDW) covariates are used as the predictor variables. 

Although organic pollutants such as PAH, PCB and TPH are frequently measured in UK urban 

soils to comply with land-use planning system regulation this information is not published in the 
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peer reviewed literature. In addition, supporting chemical measurements, such as determinations 

of BC which provide insights into their interaction with natural and co-occurring anthropogenic 

polymers are rarely undertaken. This study aims to fill these knowledge gaps: (1) provide a 

baseline geochemical survey of TOC, BC, TPH, PAH and PCB across Central London; (2) compare 

the concentrations found at two depth intervals and with other major cities; (3) discuss the 

concentrations with respect to published human health generic assessment criteria (GAC) so this 

dataset can provide a baseline for long-term environmental monitoring and help to quantify the 

impact of future pollution changes and/or events; (4) identify, where possible ratios of PAHs and 

PCBs to describe potential sources of pollution and characterise the likely contribution of 

emissions; (5) Explore machine learning Random Forest modelling approach to mapping organic 

pollution trends across Central London. 

2. Materials and Methods 

2.1 Soil Sampling and Preparation 

Urban soils were collected from the Greater London Authority (GLA) encompassing an area of 

London Boroughs and the City of London, UK (Figure 1). At each site surface soil samples were 

recovered from four corners and the centre of a 20 m by 20 m square grid at surface 0 to 2 cm (X 

sample) and subsurface 5 to 20 cm (A sample) using a hand-held Dutch auger. The five auger 

flights were combined to give ~ 1 kg wet weight which was stored in Kraft wet strength sample 

bags (125 mm x 250 mm) which in turn were stored in sealable polyethylene outer bags [2, 27]. 

Upon return to the laboratory, soils were freeze-dried, desegregated and passed through a brass 

sieve with an aperture of 2 mm before being ball milled (agate balls and lined vessels) to pass a 63 

µm sieve. This method was chosen as a statistically robust preparation method for high precision 

and accuracy PAH quantification [28-30]. 
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Figure 1 Map showing position of soil sample locations analysed for organic pollutants. 

Soil data BGS, ©  UKRI. Contains Ordnance Survey data© Crown Copyright and 

database rights 2016. 

2.2 Organic Carbon, Black Carbon and Total Petroleum Hydrocarbons  

Total Organic carbon (TOC %) was determined after acidification with HCl (50% v/v) using a 

Elementar Vario Max’ C/N analyser [31]. The limits of quantification for a typical 300 mg sample 

were 0.18%. Black carbon was determined by multiple solvent extractions and thermal treatment 

with elemental analysis of carbon [32, 33]. Total petroleum hydrocarbons were determined after 

extraction and separation by Iatroscan Mk6 (Supplementary) [7]. 

2.3 Polycyclic Aromatic Hydrocarbons 

Polyaromatic hydrocarbons (PAH) (10 g) were spiked with deuterated standards, extracted with 

dichloromethane/acetone (1:1 v/v) using ASE, reduced in volume and isolated for analysis by solid 

phase extraction (SPE) using an identical scheme and operating conditions as those reported for 

urban soils and sediments from Clyde Basin and New York [7, 8]. Polyaromatic hydrocarbons (PAH) 

were measured using a Varian 3800 gas chromatograph (GC) coupled to a Varian 1200L triple 
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quadropole mass spectrometer operating in full scan mode (ionization energy 70 eV, mass range 

47-500 amu). Application (1 L) was by splitless injection from 0-0.7 min and thereafter a split 1:20 

was applied (injector temperature 280 °C). The GC was fitted with a fused silica Varian VF-35MS 

column (30 m length × 0.25 mm i.d. × 0.1 µm film thickness). The GC oven-temperature 

programme was 60°C (1 min. isothermal) to 320°C (at 6°C.min-1.) and held isothermally at 320°C 

for 10 min and helium was used as carrier gas (1 mL.min-1). Quality control was achieved by 

duplicate analyses of a single certified reference material (NIST 1941b) at a minimum of every 10 

samples. The LOQ was determined peak height at 5 times signal / background ratio. 

2.4 Polychlorinated Biphenyls 

Soils (10 g) were spiked with 50 µL of PCB 34 (18.92 ng.µL-1), PCB 62 (19.77 ng.µL-1), PCB 119 

(18.92 ng.µL-1), PCB 131 (19.24 ng.µL-1) and PCB 173 (18.81 ng.µL-1), and 50 µL of a recovery 

standard solution of PCB 19 (20.01 ng.µL-1) and PCB 147 (19.31 ng.µL-1). After 1 h equilibration, 

spiked soils were combined with clean sand (1:2) and copper powder added before ASE extraction 

using acetone/hexane (1:1 v/v). Extracts were reduced to 3-4 mL and mixed with H2SO4 to release 

humic bound PCBs [28, 34]. The supernatant was retained and reduced to 0.25 mL before transfer 

to a pre-filled Na2SO4 SPE cartridge (Agilent, Bond Elute TPH, 500 mg). The first fraction was eluted 

with 1.5 mL of pentane and discarded. The second fraction was eluted with 6 mL of hexane 

propanol (97:3 v/v) and spiked with 100 µL of the analytical standard solution (PCB 29, 9.47 ng.µL-1) 

and PCB 157 (9.53 ng.µL-1) and reduced to 200 µL under a stream of nitrogen. Analysis was by 

combined gas chromatography-mass spectrometry (GC-MS) using a Fisons GC8000 gas 

chromatograph coupled to a Fisons MD800 single quadrupole mass spectrometer in full scan 

mode (ionisation energy 70eV, mass range 39-600 amu)[28, 34, 35]. Quantification of PCBs was 

achieved using selected ions for the ICES 7 PCB (International Council of the Sea: congeners 28, 52, 

101, 118, 138, 153 and 180) which represent a large proportion of most commercial formulations, 

span a wide range of chlorination (3-7) and are widely considered a key suite enabling comparison 

with other soil and sediment studies. 

2.5 Spatial Modelling Interpolation 

The data analysis was carried out using the R programming Language [36] and associated 

libraries. The “sf ” R library [37] was used to attribute the deprivation data to the sampling 

points and prediction grid. The “ranger” R library [38] was used to carry out the RF modelling. 

The Boruta R library [39] was used to select the significant predictor variables in the RF model. 

Preliminary checks (not reported) show that after the top 5 to 10 most important IDW 

predictor combinations, inclusion of further IDW predictors does not meaningfully improve the 

root mean square error of prediction (RMSEP). Details of the four stages of modelling and 

interpolation are presented in the supplementary. 

3. Results & Discussion 

3.1 Organic Carbon 

London surface soils TOC (0-2 cm) ranged from 3.05-11.85 %, mean of 6.58 % and median of 

6.07 %, standard deviation 2.11 % and counterpart subsurface soil TOC (5-20 cm) ranged from 
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1.75-9.61 % mean of 5.06 % and median of 4.95 %, standard deviation 1.66 % (Figure 2, Table 1). 

Taking both soil depths together, TOC ranged from 1.75-11.85 %, mean of 5.82 % and median TOC 

of 5.42 % (n=146) (Table 1). Evaluation of the TOC showed that surface soils contained higher 

amounts of organic carbon than sub-surface soils (t-test; P=<0.001) (Table S1). Variation in TOC is 

probably due to the diverse range of current and historical land-use and inclusion of two depth 

horizons at each site, which, not-withstanding physical disturbance common to most urban soils, 

probably differ in age and extent of decomposition of the more labile organic compounds and 

polymers [40, 41]. Conversely, factors such as the incorporation of geological parent material (pre-

Anthropocene TOC) were discounted since the entire study area is underlain by London Clay 

(Eocene) and organic rich peats (Holocene) only outcrop at a few locations along the River Thames 

foreshore and associated historical flood plain [42, 43]. The higher TOC in the top soil as compared 

to the sub soil is probably best explained by enhanced incorporation of living and decayed organic 

matter (e.g. fine leaf litter, hair-roots, soil humus) rather than an increase in anthropogenic carbon. 

A similar near surface, rise in TOC ascribed to greater amounts of fine roots and decomposed plant 

remains has been previously observed in upper horizons of urban soils and sediments from Staten 

Island, New York, USA and vegetated mud islands on the River Thames, London, UK [3, 8, 11]. 
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Table 1 Summary of Total Organic Carbon (TOC), Black Carbon (BC), Total Petroleum 

Hydrocarbons (TPH), Polyaromatic Hydrocarbons (PAH), Polychlorinated Biphenyl (PCB) 

concentrations in Soils of London, England, UK. 

Description TOC 

(%) 

BC 

(mg.g-1) 

TPH 

(mg.kg-1) 

PAH (Σ16) 

(mg.kg-1) 

PAH (Σ27) 

(mg.kg-1) 

PCB (Σ7) 

(µg.kg-1) 

All depths (n=146)      

Mean 5.82 NA 443 35.20 47.99  

Median 5.42 NA 323 21.23 29.37  

Min-max 1.75-11.85 NA 72-4673 1.64-

421.23 

2.42-421.23  

Std dev. 2.04 NA 491 43.52 55.93  

Soil 0-2 cm (n=73)      

Mean 6.58 13.80 421 29.51 39.29 *19.35 

Median  6.07 12.40 298 19.00 25.64 *7.53 

Min-max 3.05-11.85 3.72-

32.71 

72-4673 1.64-

184.32 

2.42-235.27 *2.56-148.72 

Std dev. 2.11 6.77 582 35.00 45.13 *28.24 

Soil 5-20 cm (n=73)      

Mean 5.06 NA 466 40.89 54.69 **21.77 

Median 4.95 NA 346 31.92 42.07 **10.40 

Min-max 1.75-9.61 NA 89-2618 3.64-

336.10 

5.22-421.23 **2.56-

135.81 

Std dev. 1.66 NA 382 50.24 64.36 **28.46 

NA BC not analysed for this depth interval; PCBs analysed on sub-set of the 73 sites *n=39 sites, 

**n=61 site 
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Figure 2 Map of London soil total organic carbon content (TOC %). Soil data BGS, ©  

UKRI. Contains Ordnance Survey data© Crown Copyright and database rights 2016. 

Other studies of UK urban soils also report considerable variation in organic carbon content, for 

example sub soils (5-20 cm) from south east London (n=73) report TOC ranging from 3.04 to 
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21.77 %, mean 7.19 %, median 6.63 % and eighty four soils from across Glasgow city spanned 2.79 % 

to 17.97 % with a mean of 6.15 % and a median concentration of 5.34 % [2, 27]. Therefore, the 

variable and sometimes high TOC % presented here for London is commensurate with other urban 

studies (Figure 2). Both lower and higher soil organic carbon content have been reported for the 

smaller, formerly industrialised urban centres of Stoke (n=737, range 0.4 to 42.5 %, mean 7.3, 

median 6.8 %) and Coventry (n=808, range 0.9 to 18.6, mean 3.5, median 3.3). However, some 

caution in comparison of TOC different studies is required. This is because the TOC % were 

obtained using Loss on ignition (LOI) at 450°C, a cost effective, but less accurate method for 

organic carbon that is influenced by a range of confounding factors including: 1) loss of structural 

water and oxyhydroxides in clays ; 2) incomplete carbon combustion at low temperatures (~450 °C) 

and loss of inorganic carbonates (>440°C) [44, 45]. Whilst these limitations are not necessarily 

significant in sand dominated soils they are relevant to any soil containing clay mineral particles 

such as London soils or those with high inorganic carbon content (e.g. carbonate).  

 Due to its importance in sustaining primary agricultural and horticultural productivity as well as 

underpinning other ecosystem services, soil organic carbon (SOC % synonymous with TOC %) has 

been measured and evaluated in non-urban rural UK soils [32, 46, 47]. The 2007 summary data for 

top-soils (0 to 15 cm) from the Countryside Survey reported mean English soil organic carbon 

(from LOI) of 7.65 % [48]. Lower TOC % were reported for arable and horticultural soils (3.8 %), 

whereas slightly higher TOC were found in improved and neutral grassland soils (6.77 and 8.36 %), 

acid grasslands (25.79 %), shrub/heathland (26.46 %) and broad-leaf/mixed woodland (13.01 %) as 

well as coniferous woodland 19.94 % [48]. Comparison of TOC values suggest the London soils 

have higher TOC than UK agricultural and horticultural soils, a similar TOC to improved and neutral 

grasslands and lower TOC compared to semi-natural acid grasslands, broad leaf and coniferous 

woodlands, shrub/heathland and wetlands. This mid-table position in the overall UK soil organic 

carbon ranking contrasts with studies from Germany (Rostock), USA (New York and Baltimore), 

Moscow (Russia) which reported elevated values in urban land-use domains compared to their 

rural equivalents [49-52]. The higher urban organic carbon content was attributed to a range of 

factors including; 1) addition of admixtures during landscaping; 2) residential settlement history 

and composting; 3) inhibition of microbial litter decay due to an increase anthropogenic 

polyaromatic hydrocarbon concentrations; and 4) higher use of wood/coal fuels linked to latitude 

and climate and temperature. However, other studies such as those comparing sites New York, 

USA and natural and sealed urban sites in Seoul, South Korea found 66 and 27 % less TOC in the 

urban domain [53, 54]. Therefore, the data presented here for London does not fully support 

either extreme notion (higher/lower than rural counterparts) but rather suggest that urban soils 

are part of a continuum of UK soil carbon inventory. 

3.2 Black Carbon 

Black Carbon (BC) surface soil concentrations are shown in Figure 3 and Table 1. The BC ranged 

from 3.72 to 32.71 mg.g-1, mean 13.80 mg.g-1 and median of 12.40 mg.g-1 with a positive linear 

correlation between BC and TOC (R2 0.45) indicating that BC only partly controls London urban soil 

TOC. One plausible explanation for this association being that soil TOC is dominated by natural 

organic matter such as fine plant roots, decaying organic matter (leaf litter, microbial tissues) and 

repolymerised decay products and residues (humus) [55]. In contrast, Urban soil BC most likely 
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originates from anthropogenic activities such as burning of wood or coal or pyrolysis of wood 

(charcoal) as well as other contributors such as vehicle exhaust particulates [32, 56]. Black carbon 

to total organic carbon ratio (BC/TOC) ranged from 0.07 to 0.4 with a mean of 0.2 (Figure 4). In 

general, BC/TOC ratios of <0.1 are taken to indicate incorporation of burnt biomass whereas 

higher BC/TOC ratios of 0.4 are attributed to input from combustion of fossil fuels. London surface 

soil (0 to 2 cm depth) BC/TOC ratios fall between these criteria suggesting incorporation of both 

combustion fossil fuel and burnt biomass sourced organic matter or alternatively some unknown 

industrial or household waste source inputs. 

 

Figure 3 Concentration of black carbon (BC) in surface soils of London. Soil data BGS, ©  

UKRI. Contains Ordnance Survey data© Crown Copyright and database rights 2016. 



Adv Environ Eng Res 2021; 2(2), doi:10.21926/aeer.2102011 

 

Page 12/42 

 

Figure 4 Comparison of black carbon in urban soils [32, 56-61]. 

London soil BC concentrations are similar to those reported for other UK urban-industrial 

centres, namely, Glasgow, Coventry and Stoke (4.6 to 17.7 mg.g-1) and about ten times higher than 

woodland and grassland background soils of the UK (n=31) which varied from 0.45 to 3.13 mg.g-1 

(mean 1.36 mg.g-1) (Figure 4) [32, 62]. Conversely a regional scale study of 55 urban soils in North 

East England reported even higher concentrations of 16.8 mg.g-1 in the topsoil decreasing to a 

median of 5.7 mg g-1 at 1 m depth [56]. It should however be borne in mind that although lower 

than NW UK, a comparison of BC concentrations from other world cities suggests that London soil 

BC content is relatively high, possibly reflecting protracted BC accumulation from legacy industries, 

long history of domestic coal burning (until 1960s) combined with the high density of coal and gas 

fired power stations situated along the London reaches of the river Thames; mainly 1850s to 

1980s [1, 63]. For example, a study of Beijing urban soils from 0 to 20 cm BC ranged from 0.37-

12.7 mg.g-1, mean 4.66 mg.g-1 and BC/TOC ratio ranging from 0.04-0.91 with a mean of 0.31 

(Figure 3). Overall, the high BC concentrations, low BC/TOC value and weak positive 

correspondence to TOC % supports the notion of multiple industrial and domestic BC inputs rather 

than a single dominant source (e.g. wood/charcoal burning only). 

The occurrence of BC at high concentrations in surface soils has both positive and negative 

environmental implications. Owing to its high porosity BC and particularly the charcoal fraction 

can adsorb pollutants including PAH, PCB, dioxins and polybrominated diphenyl ethers (PBDE) as 

well as heavy metals thereby reducing their bioavailability to ecology and humans [58, 62, 64-66]. 

Similarly, the presence of BC in soils has also been reported to increase cation exchange capacity 

as well as physically stabilise humic acids which in turn increases soil fertility [67]. However, the 

more condensed soot fraction can be detrimental to animal and human health. For example, 

inhalation of particulate organic matter containing nanoparticles of BC adversely effects lung 

function and has been linked to cardiovascular mortality and clinical effects including ventricular, 
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repolarization, changes in blood pressure heart rate variability, endothelial dysfunction. 

Epidemiological studies have identified that distance of the home to the nearest main road is 

important and a recent evaluation of airway macrophage carbon in London’s commuting cyclists 

showed that inhaled dose of BC was linked to time taken to travel and route (traffic density)[68]. 

Whilst it isn’t possible to directly link soil hosted BC concentration to atmospheric particulates and 

effect on human health it is reasonable to assume that the variations in BC accumulating in soil are 

at least in part linked to atmospheric sources (e.g. soot, vehicle exhaust, road dust) although other 

anthropogenic inputs (coal, ash, slag) cannot be entirely ruled out because the BC methodology 

employed cannot discriminate BC fractions as it encompasses a broad range of condensed 

aromatic structures. 

3.3 Total Petroleum Hydrocarbons (TPH) 

Concentrations of petroleum hydrocarbons (TPH) in London top soil (0 to 2 cm, n=73) ranged 

from 72-4673 mg.kg-1 (std deviation 582 mg.kg-1), mean 421 mg.kg-1, median 298 mg.kg-1 with 

saturated hydrocarbon (aliphatic) concentrations ranging from 70-3576 mg.g-1, mean 277 mg.g-1, 

median 162 mg.g-1 and aromatic hydrocarbon concentrations from < 3-1097 mg.g-1, mean of 144 

mg.g-1 median of 108 mg.g-1 (Figure 5). The biogenic lipid/resin concentration in the top soils 

ranged from 114-13153 mg.g-1, mean 991 mg.g-1 and median of 771 mg.g-1. Counterpart, London 

sub soil (5 to 20 cm, n=73) TPH ranged from 89-2618 mg.g-1, mean 466 mg.g-1, median 346 mg.g-1 

with saturate hydrocarbons ranging from 89-1,118 mg.g-1, mean 283 mg.g-1, median 214 mg.g-1 

and aromatic hydrocarbon concentrations from 17-1500 mg.g-1, mean of 194 mg.g-1 median of 139 

mg.g-1 and the biogenic lipid/resin concentrations ranged from 95 to 4,776 mg.g-1, mean 753 mg.g-

1, median 585 mg.g-1 (Figure 5). When both soil horizons are considered together London soils 

(n=146) concentrations of TPH varied from 72-4,673 mg.g-1, mean of 443 mg.g-1 and median of 323 

mg.g-1. Assessment of soil TPH data confirmed that that the deeper sub soils (5-20 cm) contained 

greater amounts of TPH than surface soils (0-2 cm) (t test; P=<0.002) which substantiates a 

relative decrease in London’s anthropogenic organic and heavy metal pollutants since its peak in 

1940s-1980’s [1, 3]. 
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Figure 5 Total petroleum hydrocarbons (TPH) in London soils. Soil data BGS, ©  UKRI. 

Contains Ordnance Survey data© Crown Copyright and database rights 2016. 

Before proceeding with an evaluation of London soil TPH concentrations it should be borne in 

mind that soils considered largely devoid of pollution generally contain a background of 
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hydrocarbon compounds owing to their biosynthesis by most organisms and subsequent 

incorporation of partially degraded biomass in soils and sediments (e.g. grass stems, tree roots, 

epicuticular leaf waxes, cell walls (bacteria, moulds, fungi), algae and animal tissues) [9, 69-71]. 

For example, unpolluted soils and sediment intervals from mangrove soils of south China and 

marsh soils of Virginia, New Jersey and New York, USA showed TPH concentrations ranging from 

100-300 mg.g-1 [8, 35, 72]. Similarly, unpolluted river sediments from the upper rural reaches of 

River Clyde, UK found TPH spanning 3-260 mg.g-1 with a mean of 68 mg.g-1 and unpolluted 

sediment River Derwent (Australia) ranged from 10-<500 mg.g-1 [7, 73, 74]. In New England, USA, 

the state agencies defined as 373 mg.g-1 whereas for regulatory, non-risk based evaluations in 

Australia and New Zealand TPH guidelines of <280 mg.g-1 (no concern) and 550 mg.g-1 (of concern) 

are used within a weight of evidence assessment for coastal sediments [73, 75]. Conversely, soils 

receiving appreciable diffuse and or point source (e.g. crude oil, refined oils and fuels, industrial 

discharge) hydrocarbon pollution typically contain TPH >1000 mg kg–1 [76]. For example, 

sediments from polluted urban tributaries of Glasgow, Scotland, UK yielded a mean TPH of 2,779 

mg.g-1 including concentrations as high as 37,879 mg.kg–1 and oil spill contaminated marsh soils 

from Staten Island, New York, USA report TPH 2,500-9,586 mg.kg–1 [7, 8]. Further, a more nuanced 

understanding of urban soil TPH concentrations has been gained from industrial waste and fresh 

end-member materials analysed in parallel with urban soils [27]. The TPH concentrations of the 

source end members were highly variable and ranked as follows: creosote impregnated railway 

sleeper (23,150 mg.kg–1)>coal (9,259 mg.kg–1)>bitumen road dust>(884 mg kg–1)>metal processing 

industrial slag>(181 mg.kg–1)[27]. Therefore, in this current work a TPH concentration >500 mg.g-1 

was taken to indicate the presence of anthropogenic sourced TPH. 

Benchmarking against the TPH >500 mg.g-1 anthropogenic hydrocarbon criterion revealed 

exceedances of 11 surface soils (0-2 cm) and 20 sub soils (5 to 20 cm) indicating the presence of 

appreciable anthropogenic saturate and aromatic hydrocarbons. The most likely cause being 

incorporation of wastes from fuel spills, legacy coal particles, road dust bitumen, diffuse traffic 

exhaust or other unknown legacy domestic/municipal or industrial wastes. A recent survey of 84 

urban sub soils (5-20 cm) collected across the city of Glasgow reported lower ranges of 75-2,505 

mg.g-1 and a means 388 mg.g-1 as compared to those here for London soils (e.g. mean 421 and 426 

mg.g-1)[27] (Figure 6). In view of the inherent inhomogeneity of urban soils, variable end-member 

concentrations and different histories of urbanization and legacy industries of London and 

Glasgow the ranges and means of ~400 mg.g-1 are remarkably consistent and provide a broad 

benchmark by which future improvements in soil quality could be benchmarked against. 
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Figure 6 Box and whisper plot of PAH concentrations for London soils; displaying 

outliers (circle markers), highest and lowest non-outliers (upper and lower whisker 

limits), upper and lower quartiles (upper and lower box limits) and median values 

(horizontal red line). 

3.4 Polyaromatic Hydrocarbons (PAH) 

Concentrations of Σ16PAH in London top soil (0 to 2 cm) ranged from 1.64 to 184.32 mg.g-1 with 

a mean 29.51 mg.g-1, median 19.00 mg.g-1 and Σ27 PAH ranged from 2.42 to 235.67 mg.g-1 with a 

mean 39.29 mg.g-1 and median 25.64 mg.g-1 (Table 1). The Ʃ16 PAH in London sub soil (5 to 20 cm) 
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varied from 3.64 to 336.10, mean 40.89 mg.g-1, median 31.92 mg.g-1 and Σ27 PAH concentrations 

ranged from 5.22 to 421.23 mg.g-1 with a mean 54.69 mg.g-1 and median 42.07 mg.g-1 (Table 1, 

Figure 6). When taken together the London soils (n=146) had a mean Ʃ16 PAH of 35.20 mg.g-1 and 

Σ27 PAH of 47.99 mg.g-1 (Table 1). The Ʃ16PAH, Σ27PAH and benzo[a]pyrene (BaP) concentrations 

were significantly higher in the sub soil as compared to the surface soil (t-test, p=<0.001) (Table 

S1).  

The highest soil PAH concentrations were observed in the south east boroughs of Greenwich, 

Woolwich, Deptford which is in keeping with the areas ongoing road traffic congestion issues and 

or industrial legacy (Figure 7) [1]. In addition, sites spanning central London’s Hackney, Stoke 

Newington and Islington had elevated PAH concentrations as compared to Camden, Hampstead, 

Kensington, Fulham, Marylebone, Paddington, Wandsworth which have to a lesser or greater 

extent residential land-use histories. The relative contributions made by 27 individual PAH in 

London top and sub-soils are presented in boxplots (mean denoted by cross, median value by a 

line, together with min-max values and outliers using the 1.5 times interquartile range criterion 

(Figure 6). These show minor contributions of about 0.5 mg.g-1 of the total PAH mass of low 

molecular weight PAH (2–3 ring) such as naphthalene, acenaphthylene, 1-methylnaphthalene and 

major contributions of about 3 to 5 mg.g-1 of the total PAH mass from higher molecular weight 

PAH (4–6 ring) dominated by fluroanthene, pyrene, benzo[a]pyrene, benzo[b]fluronanthene, 

benzo[b/k]fluronanthene, benzo[e]pyrene and benzo[a]pyrene as well as benzo[ghi]perylene. 

However, it should be borne in mind that not all 4 and 5 ring PAH were dominant, for example 

triphenylene, perylene and dibenz[a,h]anthracene were at about 1 mg.g-1 (Figure 6).  
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Figure 7 Concentration of polyaromatic hydrocarbons (Σ16 USEPA PAH) in London soils. 

Soil data BGS, ©  UKRI. Contains Ordnance Survey data© Crown Copyright and 

database rights 2016. 

Although sub soil (5-20 cm depth) total Σ27PAH concentrations were higher than top soils the 

relative contributions across the molecular weight/ring sizes did not change. This similarity in 
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relative contribution across 2-6 ring PAH supports the notion of a fairly consistent urban 

background source(s) input and/or possibly reflects rapid near surface PAH weathering effects (e.g. 

leaching, photolysis, volatilisation, microbial mediated decay) and or mixing. Although PAH 

concentrations in soils generally decrease with depth, some studies have reported elevated PAH 

at depth due to sequential deposition of different contaminated industrial wastes yielding rise-

peak and fall profiles similar to that observed in water deposited sediment cores or the addition of 

burnt building material and rubble from the second world war (1939-1945) [8, 12, 77]. In the light 

that London was heavily bombed during WWII and that the majority of sites have had multiple 

land-uses both explanations are plausible. Overall the PAH concentration data confirms a general 

recent decline in PAH pollution in surface soils (0-2 cm) as compared to deeper older counterpart 

(5-20 cm). 

On a national basis (UK), the mean concentrations and ranges of PAH for central London rank 

above those for other studies. For example, 76 soils from 5-20 cm of east London (Thamesmead-

Erith-Abbey Wood) had a Ʃ16PAH ranging from 4 to 67 mg.kg–1, mean of 18.6 mg.kg–1 and median 

of 14.0 mg.kg–1 and 84 soils from Glasgow, Scotland showed a mean of 32.4 mg.kg–1 and median of 

12.5 mg.kg–1 [2, 27]. The UK Environment Agency Soil and Herbage Survey of 2007 reported Σ22 

PAH for 42 English urban soils. These ranged from 0.79 to 55.1 mg.kg–1 with a mean 25.7 55 

mg.kg–1, median 10.5 mg.kg–1 and a standard deviation of 83.9 mg.kg–1 whereas English rural soils 

(n=182) Σ22 PAH ranged from 0.04 to 16.8 mg kg–1, mean 0.86 mg.kg–1, median 0.93 mg.kg–1 and a 

standard deviation of 2.74 mg.kg–1 [78]. Therefore, both soil depth intervals (0-2 and 5-20 cm) 

presented here for London (means 29.51 and 40.89 mg.kg-1) are slightly higher than previous 

studies of metropolitan areas and about 35 times higher than rural soils of England. The most 

plausible explanation for the higher concentration of PAH in central London soils as compared to 

other UK urban areas is that London has by far the greatest population of any UK city (~10 M) and 

therefore in all likelihood the greatest PAH input from domestic wood and coal combustion and 

traffic. Also, the entire city received appreciable historical aerial input from the numerous coal and 

oil fired power stations that flank the Thames in London (e.g. Battersea, Bankside (Tate Modern), 

Barking, Fulham, Greenwich, Woolwich, Chelsea) as well as direct waste fill from fuel and 

industrial processing plants (gas works/coke production/aluminium production/tar-asphalt 

production). Therefore, the elevated PAH concentrations are entirely in keeping with this legacy.  

On an international basis the PAH concentrations reported here are higher than most 

comparably sized metropolitan / urban centres. For example, surface soils (0-2 cm) from 

Manhattan, New York (n=27) yield Σ16PAH content ranging from 1.89 to 22.91 mg.kg-1, mean 6.63 

mg.kg-1 and median 6.53 mg.kg-1 whereas counterpart sub soils (>15 cm) spanned 0.94 to 34.05 

mg.g-1 mean 5.10 mg.kg-1 median 4.67 mg.kg-1 [59]. In Beijing, China, soils from urbanised districts 

(n=233, 0 to 10 cm) ranged from 0.09 to 131.41 mg.kg-1 mean 1.22 mg.kg-1 and median of 0.68 

with a standard deviation of 1.80 mg.kg-1 and surface soils (0-5 cm) from Delhi, India impacted by 

traffic sourced report Σ16PAH 1.0 to 9.65 mg.kg-1 mean of 4.69 mg.kg-1 [79, 80]. In contrast, higher 

concentrations have been recently reported from Ruhr, Germany (Ʃ16 PAH 0.1 to 70 mg.kg-1, mean 

44.6 mg.kg-1, median 31.1 mg.kg-1) where the high PAH content was directly attributed to the 

presence of visually identifiable anthropogenic components including coal, charcoal, ash, rubble 

and industrial tailings [81]. Therefore, the similar PAH content here in the London soils broadly 

supports the notion inferred from BC and TPH concentrations that the majority of soils have 

received a mixture of contemporary and historical anthropogenic inputs.  
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The relationship between soil TOC and total PAH content was evaluated using a Pearson 

correlation coefficient. Surface (0 to 2) and subsurface (5 to 20 cm) soils showed a weak positive 

correlation of 0.25 and 0.29 and BC to Σ16PAH of 0.34. The moderate associations are probably 

due to a variety of factors including: 1) wide range TOC inputs in urban soils; 2) plant biomass 

(grass, leaves, stem, root bark) dominated by structural biopolymers (cellulose, lignin, tannin, 

suberin) that are devoid of PAH; 3) the genesis and transport of PAH (soot, coal 

fragments/dusts, particulate matter) which may hinder or assist surface sorption, diffusion, 

entrapment to the mineral fraction; 4) variability of BC form which in turn imparts for PAH [29, 

82-84]. These findings are consistent with other studies of urban soils/sediments suggest that 

PAH concentration normalisation to TOC or SOM may in some cases be inappropriate due to 

the variable importance of individual processes controlling pollutant-mineral exchangeability 

and divergent natural organic matter[85]. Overall, the weak positive correlation of BC to PAH 

suggests that the BC in-itself is not a dominant source of PAH. 

3.5 Source Apportionment of Polycyclic Aromatic Hydrocarbons (PAH) 

Allocation of soil PAH to pyrogenic, petrogenic or biogenic source categories is commonly 

achieved using a combination of descriptors such as: 1) distribution pattern of parent and 

alkylated PAH; 2) ratio 2-3 to 4-6 ring parent PAH; 3) presence of specific PAH that indicates a 

specific source (e.g. biological perylene) and; 4) isomeric and non-isomeric PAH ratios [12, 86-

88]. The first approach is based upon the premise that PAH formed slowly at low temperatures 

yield substantially higher amounts alkylated than parent PAH (e.g. crude oil, coal) whereas 

rapid high temperature formation yields higher amounts of parent as compared to alkyl-

substituted PAH (e.g. Power station and industrial emissions/traffic exhaust/soot). Similarly, the 

fourth source apportionment term arises from the principal that one isomer has greater 

thermal stability and can therefore indicate high temperature combustion (pyrolytic synthesis) 

as compared to low-temperature petrogenic (unburnt fossil fuels) input. However, before 

proceeding it should also be noted that most environmental forensic studies recognise 

considerable intra and inter-source ratio variability which can alongside weathering effects 

confound unequivocal allocation [7, 89]. 

The distribution pattern of parent to alkyl-substituted PAH can be used to elucidate 

anthropogenic PAH inputs in soils and sediments. Inspection of the mean surface soil parent 

(C0-C3 or C0-C2) for naphthalene, fluorene, phenanthrene, fluoranthene + pyrene and 

chrysene reveal a complex pattern which is partly sloped suggesting pyrogenic sources but also 

exhibits a bell-shaped distribution profile for phenanthrene P0-P2 series possibly indicating 

some petrogenic (unburnt fossil fuel) influence (Figure 8). The reverse slope of the naphthalene 

N0-N2 series is unusual and maybe explained in part by the semi-volatility of N0 (Figure 8). In 

contrast the sub-soil (5-20 cm) interval shows phenanthrene, fluoranthene + pyrene and 

chrysene homologous series are sloped suggesting mainly pyrogenic source(s) (Figure 8). 

Measurement of PAH in German urban soils mixed in the laboratory with bituminous coal 

(petrogenic source) and a tar inputs (pyrogenic source) reported that a third V-shaped 

distribution pattern is observed in fluoranthene + pyrene (C0-C4) between 40:60 to 94:5 % and 

that this distribution pattern is also found for summed ΣC0 and ΣC2 alkylated PAH with maximal 

decrease occurring for C1 PAH [81]. In this current study, inspection of the London soil parent-



Adv Environ Eng Res 2021; 2(2), doi:10.21926/aeer.2102011 

 

Page 21/42 

alkylated distribution profiles reveals a somewhat similar V-shaped pattern for chrysene series at 

both soil depth intervals and a possible V-shaped profile for naphthalene in the sub soil confirming 

multiple anthropogenic sources in both (Figure 8). The ratio of parent 2-3 to 4-6 ring PAH provides 

a complementary means to parent-alkyl distribution pattern for source identification since 

unburnt fossil fuels (petrogenic origin) yield 4-6 ring /ΣPAH of <0.40 whereas burnt (pyrogenic) 

inputs 4-6 ring /ΣPAH of >0.50 [90]. In this current study surface soil 4-6/ΣPAH ranged from 0.77 to 

0.92 (mean 0.87) and sub soil ranged from 0.61-0.99 (mean 0.88) which suggests that all the soils 

were dominated by PAH formed from pyrogenic processes such as fuel combustion, vehicle 

exhaust, burning of wood (Figure 8). 

 

Figure 8 Mean distribution of parent and alkylated polycyclic aromatic hydrocarbons 

(PAH) in London soils (see Figure 1). N=naphthalene, F=Fluroenes, P=phenanthrenes, 

FL=fluroanthenes, FP=combined fluroanthenes+pyrenes, C=chrysenes. Degree of 

alkylation is indicated by number. 

Particulates from vehicle traffic exhaust can yield high concentrations of benzo[ghi]perylene 

relative to benzo[a]pyrene such that values >3.14 are used to infer traffic sourced PAH in urban 

soils and sediments [77, 78]. In this current study surface soils (0-2 cm) benzo[ghi]perylene to 

benzo[a]pyrene ratios ranged from 0.58 to 1.24, mean 0.72, median 0.68 and sub-soil (5-20 cm) 

ranged from 0.28 to 1.19, mean 0.62, median 0.59. Therefore, none of the soils exceeded the 

boundary value of 3.14 which on face value could be taken to indicate low amounts of traffic 

sourced PAH. However, this interpretation seems rather implausible given that the majority of soil 

sample sites were situated in close proximity to roads including a few from some of London’s 

busiest intersections (e.g. Marble Arch (25), London Bridge, A100 (40), A200 motorway). This 

therefore calls into question ability of benzo[ghi]perylene to benzo[a]pyrene ratio to identify 

traffic sources over and above a complex urban background. Concern over the dependability of 
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the ratio is further supported by inspection of sites away from major roads (e.g. Hampstead Heath 

(sites 18, 20) with values of 0.61 and 0.53 and 0.73 and 0.70 that were not significantly lower than 

equivalents from outside the park (sites 12, 17, 30) (Figure 1). Furthermore, inspection of sites 

with the highest ratios (>1) revealed some to be situated close to roads (site 48 Peckham and site 

46 Tower of London) whilst others were collected close to Railway lines (e.g. site 16, Stamford 

Bridge football ground (Chelsea FC) (Figure 1). The ratios benzo[ghi]perylene to benzo[a]pyrene 

presented herein are consistent with an earlier study of sub soils from south east London (range 

0.6 to 1.1, mean of 0.8) and when considered together suggest the ratio is unable to indicate 

enhanced traffic input over and above the urban background urban. This lack of fidelity may arise 

for a number of reasons including; 1) the denominator benzo[a]pyrene is varying according to a 

different source input; 2) alteration of the original source input ratio caused by post depositional 

weathering effects; 3) the ratio only works well when there are few other PAH inputs. 

Isomeric ratios are commonly applied to infer the major PAH source inputs in urban soils and 

associated urban waterway sediments [2, 8, 27, 28, 59, 77, 88]. The bi-plots presented in Figure 9 

utilise fluorene to pyrene ratio (x axis) to suggest petrogenic (uncombusted fossil fuel) as 

compared to pyrolytic (combusted) sources whereas benzo[a]anthracene to chrysene, 

benzo[a]anthracene to benzo[a]pyrene and chrysene to benzo[a]pyrene (y axis) are all to a lesser 

or greater extent used to indicate extent of distillation processing and or combustion or mixing 

[88]. London surface soil bi-plots show a tight cluster of fluorene to pyrene ratios which maybe 

taken to indicate a combustion of petroleum (e.g. traffic exhaust) and coal and vegetation which 

are typical of UK urban background sources. The one exception to this tight grouping and input 

assignment pertains to soil 71 from Woolwich-Plumbstead a site situated on the boundary of the 

Royal Arsenal Woolwich, a former military complex that included explosive testing, chemical 

laboratories as well as armaments manufacture and storage (~1800 to 1994) (Figure 1). Given the 

unusual land-use chemical association it’s entirely plausible that the atypical PAH ratio occurs as a 

result of combusted input from one or more of the former facilities. Inspection of the London sub-

soil (5-20 cm) bi-plots shows a slightly broader spread of ratios spanning petroleum and 

vegetation/coal combustion sources and comparing with contributions from carburetted coal 

water gas (CWG), coal tar and urban background (e.g. road-run off). The greater range of ratios in 

the sub soil as compared to the surface soil is most likely due to both the broader range of past 

industrial activities and also the greater time span represented by the deeper interval (e.g. 5-20 

cm to 0-2 cm). 
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Figure 9 Indicative source assignment of London soil polycyclic aromatic hydrocarbons 

(PAH) based on common diagnostic ratios based upon thermodynamic stabilities and 

anthropogenic processes [8, 27, 88, 91, 92]. 

3.6 Polychlorinated Biphenyls 

Concentrations of Σ7 PCB in London top soil (0-2 cm, n=39) ranged from 2.56-148.72 µg.kg-1 (std 

deviation 28.24 µg.kg-1), mean 19.35 µg.kg-1, median 7.53 µg.kg-1 (Table1, Figure 10). London sub 

soil (5-20 cm, n=61) PCB concentrations ranged from 2.56-135.81 µg.kg-1, mean 21.27 µg.kg-1, 

median 10.40 µg.kg-1. When both soil intervals are considered together London soils (n=100) 

Σ7PCB varied from 2.56-148 µg.kg-1, mean of 20.82 µg.kg-1 and median of 9.68 µg.kg-1. Comparison 

of data confirmed that that the deeper sub soils (5-20 cm) contained greater amounts of PCB than 

surface soils (0-2 cm) (t-test; P=<0.001) an attribute most likely driven by improved UK regulation 

between 1972 to 1977 before enclosed uses were highly restricted from 1981 onwards (Table S1). 

The decrease in PCB concentration in the surface soils parallels the decline in PCB in the near 

surface portions of sediment cores from undisturbed river island (Chiswick Ait) situated in the 

River Thames, London [3]. However, it should be borne in mind that although statistically 
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significant the difference in London Σ7PCB between top and sub soil isn’t as pronounced as might 

be expected given half-lives of PCB congeners and peak use in early to mid-1970s which in turn 

suggests either enhanced protection, bioturbation/physical mixing from lower intervals and or 

continued low level atmospheric input (e.g. PCB contaminated dusts). 

 

Figure 10 Concentration of polychlorinated biphenyls (Σ7 PCB) in London soils. Soil data 

BGS, ©  UKRI. Contains Ordnance Survey data© Crown Copyright and database rights 

2016. 
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On a UK basis, the ranges, mean and median concentrations of PCB for central London soils are 

a little narrower than data presented from surveys of urban soils which do not target any 

particular industrial site or land-use (e.g. urban background). For example, previous studies by 

Organic Geochemistry (BGS) reported south east London soils (n=76) contained Σ7PCB ranging 

from 1-750 µg.kg-1, mean of 21 µg.kg-1, median 4.9 µg.kg-1 and Glasgow soils (n=84) Σ7PCB content 

was reported to vary from 2.2-1052 µg.kg-1 with a mean 52 µg kg-1 [3, 27]. The central London PCB 

concentrations shown herein are higher than those presented from the UK Environment Agency 

Soil and Herbage Survey of 2007 (n=42) which stated Σ7PCB ranging from 0.52-30 µg.kg-1, mean 

3.19 µg.kg-1, median 1.18 µg.kg-1 for urban soils and median values of 1.29 µg.kg-1 for industrial 

soils and rural soils 0.66 µg.kg-1. 

Comparison of median Σ7PCB concentrations reveals that the central London soils of this 

current study are four (surface 0-2 cm) and five (sub-surface 5-20 cm) times higher than reported 

for urban English soils and approximately eleven and sixteen times higher than PCB content of 

English rural soils. This clearly indicates that London soils contain an elevated background of PCB 

compared to other urban UK soils; presumably due to receipt of multiple industrial emissions 

(power generation, waste incineration, paper manufacture, oil refining, metal works (non-ferrous), 

cement works, chemical manufacture and textile production) and possibly secondary release from 

demolition dusts and concrete sealants [93]. Former landfill sites and associated soils are known 

to transfer high amounts of POPs including PCBs to adjacent waterways and soils, nevertheless 

London soils are slightly higher than those reported from a former landfill site soils, Brighton, 

England which varied from 1.7-13.2 µg.kg-1 [94]. In contrast, the London soils are far lower than 

those UK landfill near Cheshire, England which reported Σ7PCB 67-215 µg.kg-1 (capped or partially 

capped) and concentrations as high as 208-140,000 µg.kg-1 [95]. 

Background PCB concentrations in London soils presented in Figure 10 are broadly similar to 

those reported in other European urban soils such as those from Torino, Italy Σ19 14 µg.kg-1 (range 

1.8-172 µg.kg-1), Bayreuth, Germany, Σ12PCB 13 µg.kg-1 but are higher than studies of urban and 

peri-urban soils in Rouen, France 0.21 µg.kg-1, Aveiro, Portugal Σ19 7.9 µg.kg-1 (0.62-73 µg kg-1), 

Uppsala, Sweden Σ19PCB 5.7 µg.kg-1 (2.3-77 µg.kg-1) Ljubljana, Slovenia Σ19PCB 6.8 µg.kg-1 (2.8-48 

µg.kg-1) and Moscow, Russia Σ7PCB 10.5 µg kg-1 (3.1-18.5) [96-98]. Conversely, 36 soils and road 

dusts from 12 sites in Madrid, Spain contained higher PCB concentrations (mean) Σ7PCB 113.4 

µg.kg-1 (Σ15PCB 100-1000 µg.kg-1) than those encountered herein. Inspection of Asian urban soil 

PCB concentrations reveals higher and lower values due to different regulation histories, 

enhanced volatilisation of lower chlorinated congeners due to higher temperatures and wide 

variety of PCB containing municipal and manufactured wastes. For example, the London PCB 

concentrations were far higher than those of Korba District, Chhattisgarh, India, Σ28PCB mean 9.21 

µg.kg-1 median 0.65 µg.kg-1 (3.25-25.2 µg.kg-1) and Ulsan and Gwangyang, Republic of Korea Σ7PCB 

0.38 and 0.59 µg kg-1 but were far lower than those reported for 25 provinces and cities in Chinese 

with mean PCB of 4984 µg.kg-1 (0.3-123, 467 µg.kg-1) although it should be noted the latter data-

set was strongly skewed by a few high values from points sources in Zhejiang province [99-101]. 

Therefore, on an international basis, London soil PCB concentrations are higher than most 

European urban soils but lower than highly polluted Chinese soils. 

The relationship between soil TOC and Σ7PCB was evaluated using a Pearson correlation 

coefficient; surface and subsurface soils showed very weak positive correlations (r=0.01; r=0.12) 

whereas a stronger correlation (r=0.35) was found for Σ7PCB and BC. Combined this suggests that 
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PCBs have little affinity for natural TOC whereas the anthropogenic BC fraction, which was about a 

factor of 5 lower than TOC, has a moderate positive association to PCB. The latter association is 

most likely explained by sorbtion of PCB onto BC surfaces and/or physical entrapment in charcoal 

porosity [62, 64]. However, another more general explanation may be that urban soils are subject 

to a wide variety of pollutants from common sources (co-emission) which in turn yields a positive 

association although doesn’t necessarily infer interaction. This result differs from previous 

evaluation in rural soils from remote rural and woodland areas of UK and Norway which reported 

a stronger association of PCB and co-planar PCB with TOC as compared to BC [62]. This difference 

in PCB association (TOC vs. BC) is most likely due to the very low BC content (factor of 100 to 300 

lower BC than TOC) in the earlier study, which suggest that BC plays a more important role in 

partioning and sorption of PCBs in urban soils than in rural soils. 

A summary of each of the 7 measured PCB congener concentrations for both depth intervals 

are presented in Figure 11. The mean congener rank order for surface soils was PCB no. 138 > 118 > 

28 >153>101>180>52 whereas subsurface soils PCB congeners occurred in the order 

101>28 >118>138>153>52>180. The switch in PCB congener ranking most likely reflects changing 

source input across years (0-2 cm) as compared to decades (5-20cm) as well as photodegradation, 

variable adsorption to mineral matrices and aerobic as well as microbial degradation/alteration. In 

addition, a range of other factors including the “grass hopper” effect where lower molecular 

weight congeners such as PCB 28 are re-emitted by volatilization from soil to air to soil maybe 

important modifiers of the PCB distribution pattern. The central London PCB rankings presented 

herein differ from those from the UK Environment Agency Soil and Herbage Survey of 2007 which 

reported urban English towns/cities in the order 153>138>180>118>101>52>28 as compared to 

153>138>180>118>28>101>52 in rural soils. One plausible explanation for this difference maybe 

that the earlier study examined 0-5 cm depth interval which differs from the 0-2 and 5-20 cm 

interval evaluated here. 
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Figure 11 Box and whisper plot of PCB concentrations for London soils; displaying 

outliers (circle markers), highest and lowest non-outliers (upper and lower whisker 

limits), upper and lower quartiles (upper and lower box limits). 

Individual PCB congeners together with associated homolog groups (tri to deca-chlorinated) 

can theoretically fingerprint different formulations (Arolclors by Monsanto, USA; Clophen by Bayer, 

Germany; Fenclor by Prodelec, France used in a wide variety of manufactured products (e.g. 

capacitors, transformers, building sealants, hydraulics, lubricants, resins, carbonless paper, paints, 

adhesives, inks, extenders and cutting oils). However, studies have shown that volatilization, 

partitioning, photo-degradation and microbial de-chlorination can confound direct source-

environmental mixture matching [2, 7, 102, 103]. Given the differences in transport routes, 

weathering effects, absence of reference congener pattern and input mixtures as well as low 

numbers of congeners measured herein we consider an environmental forensic source 

apportionment beyond the scope of this baseline evaluation of organic pollution. 

From a human health standpoint the general order of relative PCB toxic potency-biological 

activity proceeds according to substitution at the ortho position and stereochemical configuration 

such that: non-ortho planar PCBs > non-ortho planar PCBs > mono-ortho planar PCBs > di-ortho 

planar PCBs [104]. In this current study the most toxic PCB determined in the ICES-7 suite is PCB 

118 which is one of eight mono-ortho (PCB 105, 114, 118, 123, 156, 157, 167, and 189) that can 

present an almost planar configuration similar to dioxins conferring a similar toxicity and biological 

effect. It is therefore important to note that PCB 118 is based on mean average the second most 

abundant of the ICES-7 congeners in the surface soils of London. The high abundance of PCB 118 

in London soils relative to other congeners is not entirely unexpected given that it is an important 

constituent of unaltered Aroclor 1280, 1254, 1248, 1242 and 1016 [104]. Although the other 

ortho-PCBs (PCB 180, 153, 138, 118, 52, 28) presented here have a low affinity for the aryl 

hydrocarbon receptor, they are reported to cause a range of negative health effects including 

disruption to the endocrine system, neurotoxicity, immune suppression and inflammation [19].  

3.7 Spatial Modelling of Organic Pollutants  

Before proceeding with a discussion of spatial modelling of organic pollutants it is useful to 

further discuss the approach used herein. Inverse distance weighted (IDW) interpolation explicitly 

makes the assumption that samples that are close to one another are more alike than those that 

are further apart [105]. To predict a value for any unmeasured location, IDW uses the measured 

values surrounding the prediction location. The measured values closest to the prediction location 

have more influence on the predicted value than those farther away. IDW assumes that each 

measured point has a local influence that diminishes with distance. It gives greater weights to 

points closest to the prediction location, and the weights diminish as a function of distance, hence 

the name inverse distance weighted [105]. IDW predictions require 2 parameters the inverse 

distance power (p) and the number of nearest neighbours (n) to use. Whilst the premise behind 

IDW is broadly correct the choice of p and n is subjective and there is no relation between the 

prediction and the actual spatial variability as in other methods e.g. in kriging the model relates to 

the spatial variance of the parameter of interest through the variogram. In this instance we have 

taken a series of IDW predictors with varying combinations of p and n and use these as the 
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predictor covariates and the Random Forest model combines these covariates to model the 

estimated soil parameter at the prediction locations. 

Model-predicted geochemical maps are presented for surface and subsurface soil TOC, BC, TPH 

and Σ16PAH as well as benzo[a]pyrene in Figure 12 and Figure 13. These all to a lesser or greater 

extent confirm a gradual rise in the selected organic pollutants across the study area trending SW 

(low) to NE (High) or E (low) to W (high). Inspection of the predicted surface and sub surface soil 

TOC maps reveals only minor spatial differences (Figure 12). Similarly, the TPH maps show broadly 

comparable 2D spatial trends, as well as the effect of high measured values at Chelsea (site 16) 

(Figure 1 and Figure 11). The suggested W-E directionality of the soil pollution has been previously 

reported for the toxic metal mercury (total Hg) a surrogate for industrial activity/power 

generation/coal in sediments in the River Thames which reported low concentrations at sites in 

the west of London (e.g. Brentford, Chiswick, Barnes) and maximal concentrations in east London 

(Deptford, Millwall, O2 arena, Barking, Woolwich) [1]. When taken together it could be speculated 

that the 2D soil pollution distribution might be transferred via urban tributaries to the River 

Thames.  
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Figure 12 Interpolated map of TOC, TPH and BC in London soils. 
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Figure 13 Interpolated maps for summed PAH concentrations and for the 

benzo[a]pyrene in London soils. 

In an urban environment such as London the spatial distribution of POPs is most likely to be 

driven by the anthropogenic activities according to land use [2, 28]. London has a complex history 

of land use [106] which is difficult to categorise. A number of studies, however, have shown that 

socio economic indicators can be a good proxy for land use [107-109] with the general premise 

that more industrialised land is associated with higher social deprivation. In this instance we have 

used the open source data on UK deprivation in 2019 provided by the Office of National Statistics 

[110] as additional predictor covariates for the RF modelling to provide the RF model an additional 

link to land use. Tables S2 to S5 show the significant predictor variables for BC, TOC, TPH, PAH and 

BaP respectively. The relative importance of each predictor (measured in the RF model by the 

gini-index [38]) are reported in decreasing order. The predictor variables beginning with “P” are 

IDW derived predictor variables with the number after the P being the inverse power and the 

number after the “N” is the number of nearest neighbours.  

Four of the deprivation measures were identified as important for TOC (Table S3) and TPH 

(Table S4). For TOC only the subsurface samples included the deprivation measures of “Income” 

(measures the proportion of the population experiencing deprivation relating to low income [110]) 

and Wider (“wider barriers” which includes issues relating to access to housing such as 

affordability [110]). For TPH in the surface samples (Table S4) the deprivation indices “Income” , 

“Emplymnt” (the proportion of the working-age population in an area involuntarily excluded from 

the labour market [110]) and “Inc.opt” (measures the proportion of all those aged 60 or over who 
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experience income deprivation [110]). For TPH in the subsurface soils (Table S4) both the 

deprivation indices “Inc.opt” and “Income” are important predictors. It is important to note that 

we do not assert that TOC or TPH are in anyway a driver of income, employment or housing socio 

economic indicators only that there is a statistically significant link – which requires a further 

investigation. Furthermore, none of the deprivation indices were identified as being important 

predictor of total PAH or benzo[a]pyrene (Table S5-S6) which is probably best explained by the 

relatively recent timing of the socio economic study (2019) as compared to long history of PAH 

input [110]. 

3.8 Normal Background Concentrations and Practical Implications 

Soil concentrations for selected PAH and PCB congeners were used to create a cautious upper 

estimate of concentrations of the population distribution taken across the study area (n=≤73, 5-20 

cm interval); these compounds were selected as they are hazardous to human health. From a 

human health risk assessment perspective, the deeper samples also provide a more conservative 

estimate of the recorded concentrations (i.e. higher). The approach used was developed by the 

BGS for the UK Department of Environment Food and Rural Affairs (Defra) for deriving Normal 

Background Concentration (NBCs) to support decisions under the Environmental Protection Act 

1990 in England and Wales but not the planning system [111]. The NBC method calculates the 

Upper Confidence Limit (UCL) of the 95th percentile (%ile) of the data. It assumes that data are of 

Gaussian distribution and if they are not then transformed data meet this criterion. The method 

assumes the data are representative of ‘continuous fixed variation’ from diffuse anthropogenic 

and geogenic inputs, excluding point sources. The UCL of the 95%ile limit of the data asserts that 

the majority of soil contaminant concentrations in an area will be below this value, point source 

pollution notwithstanding. To be clear the UCL of the 95%ile is an upper estimate of the upper end 

of the range of contaminant concentrations present either due to natural processes or diffuse 

pollution. It should not be confused with the 95% Upper Confidence Level (UCL95) of the 

population mean that is sometimes used as a representative contaminant concentration in an 

averaging area for comparison against a generic assessment criterion. The UCL95 is best described 

as a value that the true but unknown population mean contaminant concentration will be less 

than, with a 95% confidence. 

The Defra NBC approach considers whether defining geographical and geochemical domains 

with distinctly different characteristics is appropriate for the sampled area. In this study we 

considered whether areas that might reasonably be expected to be ostensibly free of 

contamination e.g. parks (n=16) and domestic gardens (n=15) differ from the overall urban London 

area. When we examined the meta-data collected during sampling we found that the ground 

conditions described for parks and domestic gardens included descriptions of brick, slag, ceramic 

and glass (Supporting Information). These materials strongly indicate the anthropogenic 

component of soil composition and the potential for contamination. For this reason, we 

considered the entire study area dataset when calculating NBCs (n=73). Study area NBCs for 

selected PAH were calculated using the deeper 5-20 cm samples (Table 2). Study area NBCs for 

ICES ∑7 PCBs and PCB118 were also calculated using data for the deeper 5-20 cm samples. The 

NBC for the ICES ∑7PCBs is 110 µg.kg-1 and for PCB118 it is 59 µg.kg-1. PCB118 was selected 
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because it is classed as a dioxin-like mono-ortho congener of potential risk to human health 

(Environment Agency, 2009).  

Table 2 Study area NBCs for PAH compared with PAH generic assessment criteria. 

PAH  

Study 

area NBC 

(mg.kg-1) 

Ratio of NBC to LQM CIEH S4ULs (6% SOM) 

Land use 

Residential 

with home 

grown 

produce 

Allotment 

Public open 

space near 

residential 

housing 

Commercial 

& Industrial 

Naphthalene 1.5 -  - - - - - - - - - - 

Acenaphthylene 0.65 - - - - - - - - - - - - - - - - - - 

Acenaphthene 0.36 - - - - - - - - - - - - - - - - - 

Fluorene 1.5 - - - - - - - - - - - - - - - - - 

Phenanthrene 15 - - - - - - - - - - - 

Anthracene 3.9 - - - - - - - - - - - - - - - - - - 

Fluoranthene  38 - - - - - - - - - - - 

Pyrene 31 - - - - - - - - - - - - 

Benz[a]anthracene 16 + + -  - -  

Chrysene 12 - - - - - - 

Benzo[b]fluoranthene 12 + + - - 

Benzo[a]pyrene 17 + + + - 

Indeno[1,2,3-cd]pyrene 11 - - - - - - - 

Dibenz[a,h]anthracene 1.7 + + + - 

Benzo[ghi]perylene 10 - - - - - - - - - - - 

∑USEPA 16 PAH 80 Na na na na 

NOTES: na = not applicable; S4ULs [112]. Land Quality Management ©  2015 

NBC is less than the S4UL by less than: 1 order of magnitude (OOM) (-); 2 OOM (--); 3 OOM (---); 

NBC is more than S4UL by less than 1 OOM (+). 

In order to evaluate the possible implications for risk-based land management decisions under 

the contaminated land regime in Part 2A of the Environmental Protection Act 1990 (Part 2A), the 

NBCs for PAH congeners were compared to published Generic Assessment Criteria (GAC) 

developed by LQM [112]. The NBC method is specifically not to be used for land use planning 

purposes. Concentrations below the NBC would in general not indicate an elevated level of risk to 

human health and would not result in regulatory action under Part 2A. The LQM CIEH Suitable for 

Use Levels (S4UL) are soil contaminant concentrations that for a specific land use scenario would 

give rise to an estimated Average Daily Exposure equal to Health Criteria Values representing a 

minimal (non threshold behaviour) or no appreciable (threshold behaviour) health risk. Such land 

use scenarios could be a female child living in a home with a garden that may be used for home 

grown produce or an adult female working in a commercial building.  

England’s National Planning Policy Framework states that land subject to a change in planning 

permission must be safe and “suitable for its proposed use taking account of ground conditions 
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and any risks arising from land instability and contamination” [113]. An assessment of suitability 

for use is informed by comparing site specific contaminant concentrations representative of the 

area being investigated with relevant GAC. Table 2 compares study area NBCs for selected PAH 

with the LQM CIEH Suitable for Use Levels (S4UL) GACs for four land uses (residential with plant 

uptake, allotments, public open space and commercial & industrial). The GACs selected were 6% 

Soil Organic Matter (SOM); TOC was recorded between 1.75 and 9.61 with a mean of 5.06 %, using 

a conversion factor of 1.74 showed SOM proportions range between 3.05% and 16.7% [114].  

Most PAH do not exceed the S4ULs for any of the land uses. The comparison however shows 

that the study area NBCs for BaA, BaP, BbF and DBA exceed S4ULs for three land uses: residential 

with homegrown produce, allotments and public open space near residential housing. This could 

trigger further inspection of land under Part 2A. It could also be seen as an indication that should a 

change of land use be required for any reason then further investigation of the potential soil 

contamination are likely to be required on a site-specific basis to ensure the land is safe and 

suitable for the intended use. Any assessment would need to be consistent with regulatory 

requirements such as those explained in the Environment Agency Land Contamination Risk 

Management guidance [115]. 

The NBC for PCB 118 (59 µg.kg-1) was compared with Soil Guideline Values (SGV) for dioxins, 

furans and dioxin-like PCBs (residential: 8 µg.kg-1; allotments: 8 µg.kg-1; and commercial: 240 

µg.kg-1) [78]. SGVs are GAC published by the Environment Agency. Most have been superceded by 

other GACs but those for dioxins, furans and dioxin-like PCBs remain current and relevant. The 

congener distribution for this study is assumed to be sufficiently similar to that used in the 

derivation of the SGVs, which itself is based on diffuse signatures measured by the UK soil and 

herbage pollutant survey (Environment Agency 2007). The PCB118 NBC exceeds the SGVs for 

residential and allotment scenarios. The exceedances are subject to the same assumptions made 

for PAH where further inspection of the land may be triggered under different regulatory regimes 

in England in order to assess risk to human health. It should be noted that exceedance of the SGVs 

does not account for concentrations of dioxins, furans and other dioxin-like PCB congeners that 

fall within the scope of the SGVs as these have not been measured. The overall approach taken 

here to evaluating the PCB data in the context of human health is consistent with earlier work by 

the authors [2]. The early study reported a lower PCB118 NBC (4.4 µg.kg-1) for a different and 

smaller area of south east London.  

4. Conclusions 

1) To the best of our knowledge this is one of the largest surveys of organic pollutants in 

London soils. This baseline study highlights both the variation in concentrations and commonality 

of source inputs across a range of urban domains. Both PAH and PCB pollutants were observed at 

every location and at both depth intervals confirming their ubiquity, persistence and potential to 

interact with humans and ecology.  

2) London surface soils contain higher amounts of anthropogenic BC than most cities, 

suggesting continued atmospheric deposition from traffic and possibly incorporation of older 

burnt wastes from legacy activities and industries. The presence of BC at high concentrations is 

not entirely unexpected given that BC is largely thought to cycle (decompose) extremely slowly. 

However, it should be borne in mind that the effect of soil BC on soil ecosystem health is probably 
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driven as much by the form of BC molecular structures present (and their ability to sorb metal and 

organic contaminants) as the actual concentration. 

3) Soils were evaluated for TPH and PAH in order to provide a baseline hydrocarbon chemistry 

for site owners, occupiers and regulators involved in understanding the potential risk to human 

health and the environment. The ubiquity of target organic pollutants in London soils was 

confirmed by the presence of petroleum hydrocarbons at all sites at both depths; of the 146 soils 

analysed 33 exceeded a non-regulatory benchmark of ~500 mg.kg-1. TPH pollution was 

significantly lower at surface than in the sub soils suggesting a general decrease in TPH pollution 

over time. London soil PAH concentrations (Σ16PAH 29.51, median 19.00 mg.g-1; Σ27PAH mean 

39.29, median 25.64 mg.g-1) were higher than many other global cities suggesting either greater 

PAH input or possibly enhanced. Parent PAH ratios confirmed that both depth intervals were 

mainly sourced from combustion processes such as traffic input (vehicle exhaust, road-surface 

ware) and coal-wood-vegetation burning. However, the pattern of alkylated PAH (e.g. 

phenanthrenes) indicated minor petroleum/oil PAH input. We speculate that the lower PAH 

concentrations observed in the surface soils as compared to subsoils may be due a combination of 

improved environmental regulations (restrictions on burning of coal/ open domestic fires/ 

industrial furnaces (e.g. Clean Air Act 1956, 1968)), decommissioning of power stations across 

central London (1960s-1980s) as well as more recent vehicle congestion charging (2003- present) 

and low emissions zones.  

4) Following a worldwide manufacturing ban in 1981, central London’s soils contain a legacy 

background of PCB pollution at a mean of Σ7 PCB 20.82 and median of 9.68 µg.kg-1 which is 10 to 

16 times higher than equivalent rural soils. London sub soils contain higher PCB concentrations 

than surface soils which is commensurate with cessation of production and gradual disposal of 

manufactured goods containing PCB. However, their presence in surface soils clearly 

demonstrates their environmental persistence and continued release into the environment, 

presumably from secondary sources such as demolition dusts, leaking capacitors/transformer 

fluids. 

 5) Model-predicted geochemical maps presented for surface and subsurface soil TOC, BC, TPH 

and Σ16PAH as well as benzo[a]pyrene indicate a general increase in concentrations along a W-E 

trend. These spatial patterns / trends are complex but broadly commensurate with the higher 

density of historical industry situated in east London. The link between present day social 

deprivation indices and POPs (TOC, BC, TPH, PAH) was explored and indicated that TOC and TPH 

were related to low Income, exclusion from the labour market and housing issues such as 

affordability. However, the precise reason for this association is not easy to interpret meaningfully.  

6) NBCs calculated for BaA, BaP and DBA exceeded the risk-based S4UL human health generic 

assessment criteria for three land uses (residential with homegrown produce, allotments and 

public open space near residential housing). The comparison shows that for these compounds this 

could trigger further inspection of land under Part 2A. It could also be seen as an indication that 

should a change of land use be required for any reason then further investigation of the potential 

soil contamination are likely to be required on a site-specific basis to ensure the land is safe and 

suitable for the intended use. Similarly, NBCs calculated for dioxin-like PCB118 exceeded the soil 

guide line value for residential and allotments which could in turn trigger further inspection.  
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