61 research outputs found
Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species
Phenological events, such as the initiation and the end of seasonal growth, are thought to be under strong evolutionary control because of their influence on tree fitness. Although numerous studies highlighted genetic differentiation in phenology among populations from contrasting climates, it remains unclear whether local adaptation could restrict phenological plasticity in response to current warming. Seedling populations of seven deciduous tree species from high and low elevations in the Swiss Alps were investigated in eight common gardens located along two elevational gradients from 400 to 1,700m. We addressed the following questions: are there genetic differentiations in phenology between populations from low and high elevations, and are populations from the upper elevational limit of a species' distribution able to respond to increasing temperature to the same extent as low-elevation populations? Genetic variation of leaf unfolding date between seedlings from low and high populations was detected in six out of seven tree species. Except for beech, populations from high elevations tended to flush later than populations from low elevations, emphasizing that phenology is likely to be under evolutionary pressure. Furthermore, seedlings from high elevation exhibited lower phenological plasticity to temperature than low-elevation provenances. This difference in phenological plasticity may reflect the opposing selective forces involved (i.e. a trade-off between maximizing growing season length and avoiding frost damages). Nevertheless, environmental effects were much stronger than genetic effects, suggesting a high phenological plasticity to enable tree populations to track ongoing climate change, which includes the risk of tracking unusually warm springs followed by fros
Divergent responses of alpine bryophytes and lichens to climate change in the Swiss Alps
Questions The alpine vegetation of the Alps is particularly vulnerable to climate change, as the temperature increase in this region is twice the global average and the available area for new colonisations decreases with increasing elevation. While numerous studies have investigated the response of vascular plants to a warming climate in the alpine belt, only a handful have investigated that of cryptogams in the European Alps. Based on a 21-year monitoring project, we assessed the effects of climate change on cryptogams along elevation, from the treeline to the subnival belt. Location Four GLORIA summits in Valais (Switzerland). Methods Between 2001 and 2022, terricolous lichens and bryophytes (from 2008) were inventoried in 52 1-m2 plots distributed across four summits: 2360 m a.s.l. (treeline), 2550 m (lower alpine), 2990 m (upper alpine) and 3210 m (subnival). Changes in species cover and richness were analysed using generalised linear mixed-effects model (GLMMs). Results For bryophytes, total cover remained stable overall. However, six species declined significantly between 2008 and 2022, and the species richness decreased after 2015. For terricolous lichens, total cover significantly increased on the lower alpine summit, while species richness increased on the upper alpine and subnival summits. Conclusions Bryophytes have probably suffered from the increasingly dry conditions, with a succession of very warm and dry summers over the last decades. Terricolous lichens have taken advantage of the warmer conditions to increase their cover on the lower alpine summit, and new species have colonised the upper summits. However, as they compete with vascular plants for soil and light, they may suffer from shrub and tree encroachment in the future and will be limited upwards by the rarity of developed soils. The large topo-climatic gradient (850 m) and the length of the time series suggest that similar trends are likely to be more widespread across the Alps
Toward a set of essential biodiversity variables for assessing change in mountains globally
Mountain regions harbor unique and rich biodiversity, forming an important part of our global life support system. This rich biodiversity underpins the ecological intactness and functioning of mountain ecosystems, which are imperative for the provision of key ecosystem services. A considerable amount of data are required to assess ecological intactness and ecosystem functioning and, given the profound anthropogenic pressures many mountain regions are being subjected to, are urgently needed. However, data on mountain biodiversity remain lacking. The essential biodiversity variables (EBVs) framework can help focus efforts related to detecting, investigating, predicting, and managing global biodiversity change, but has not yet been considered in the context of mountains. Here, we review key biological processes and physical phenomena that strongly influence mountain biodiversity and ecosystems and elucidate their associations with potential mountain EBVs. We identify seven EBVs of highest relevance for tracking and understanding the most critical drivers and responses of mountain biodiversity change. If they are implemented, the selected EBVs will contribute useful information to inform management and policy interventions seeking to halt mountain biodiversity loss and maintain functional mountain ecosystems
Outstanding challenges in the transferability of ecological models
Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their ‘transferability’) undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions
ReSurveyEurope : A database of resurveyed vegetation plots in Europe
Aims: We introduce ReSurveyEurope — a new data source of resurveyed vegetation
plots in Europe, compiled by a collaborative network of vegetation scientists. We de-
scribe the scope of this initiative, provide an overview of currently available data,
governance, data contribution rules, and accessibility. In addition, we outline further
steps, including potential research questions.
Results: ReSurveyEurope includes resurveyed vegetation plots from all habitats.
Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual sur-
veys of each plot) from 79,190 plots sampled in 449 independent resurvey projects.
Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with
GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%)
plots are from studies in which plots from the initial survey could not be exactly
relocated. Four data sets, which together account for 28,470 (36%) plots, provide
only presence/absence information on plant species, while the remaining 50,720
(64%) plots contain abundance information (e.g., percentage cover or cover–abun-
dance classes such as variants of the Braun- Blanquet scale). The oldest plots were
sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950
and 2020.
Conclusions: ReSurveyEurope is a new resource to address a wide range of re-
search questions on fine-scale changes in European vegetation. The initiative is de-
voted to an inclusive and transparent governance and data usage approach, based
on slightly adapted rules of the well-established European Vegetation Archive (EVA).
ReSurveyEurope data are ready for use, and proposals for analyses of the data set
can be submitted at any time to the coordinators. Still, further data contributions are
highly welcom
ReSurveyEurope: A database of resurveyed vegetation plots in Europe
Abstract Aims We introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions. Results ReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020. Conclusions ReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome
Geosciences Roadmap for Research Infrastructures 2025 - 2028 by the Swiss Geosciences Community
This roadmap is the product of a grassroots effort by the Swiss Geosciences community. It is the first of its kind, outlining an integrated approach to research facilities for the Swiss Geosciences. It spans the planning period 2025-2028. Swiss Geoscience is by its nature leading or highly in-volved in research on many of the major national and global challenges facing society such as climate change and meteorological extreme events, environmental pol-lution, mass movements (land- and rock-slides), earth-quakes and seismic hazards, global volcanic hazards, and energy and other natural resources. It is essential to under- stand the fundamentals of the whole Earth system to pro-vide scientific guidelines to politicians, stakeholders and society for these pressing issues. Here, we strive to gain efficiency and synergies through an integrative approach to the Earth sciences. The research activities of indivi- dual branches in geosciences were merged under the roof of the 'Integrated Swiss Geosciences'. The goal is to facilitate multidisciplinary synergies and to bundle efforts for large research infrastructural (RI) requirements, which will re-sult in better use of resources by merging sectorial acti- vities under four pillars. These pillars represent the four key RIs to be developed in a synergistic way to improve our understanding of whole-system processes and me- chanisms governing the geospheres and the interactions among their components. At the same time, the roadmap provides for the required transition to an infrastructure adhering to FAIR (findable, accessible, interoperable, and reusable) data principles by 2028.The geosciences as a whole do not primarily profit from a single large-scale research infrastructure investment, but they see their highest scientific potential for ground-break-ing new findings in joining forces in establishing state-of-the-art RI by bringing together diverse expertise for the benefit of the entire geosciences community. Hence, the recommendation of the geoscientific community to policy makers is to establish an integrative RI to support the ne- cessary breadth of geosciences in their endeavor to ad-dress the Earth system across the breadth of both temporal and spatial scales. It is also imperative to include suffi-cient and adequately qualified personnel in all large RIs. This is best achieved by fostering centers of excellence in atmospheric, environmental, surface processes, and deep Earth projects, under the roof of the 'Integrated Swiss Geosciences'. This will provide support to Swiss geo-sciences to maintain their long standing and internatio- nally well-recognized tradition of observation, monitor-ing, modelling and understanding of geosciences process-es in mountainous environments such as the Alps and beyond
<scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe
AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec
- …