17 research outputs found

    Using microdialysis with a deuterium oxide tracer to estimate water exchange, water content and active surface area of the probe

    Get PDF
    Microdialysis is a useful tool for measuring in situ fluxes of soil compounds with minimal disturbance of soil structure and function. Fluxes of sampled compounds are commonly calculated per unit of membrane surface area, assuming that the entire membrane surface is capable of exchange - which is unlikely given varying soil moisture and the occlusion of membrane pores by the soil solid phase. We present a method to quantify the degree of connectivity of the microdialysis probe membrane to the surrounding soil by means of water exchange between a microdialysis perfusate and soil solution using deuterium (2H2O; equilibrated to DHO) as an internal standard. We applied the method to a range of probe membrane surface areas and soil moisture conditions to generate empirical models that estimate membrane surface area active in exchange. Our results suggest that even in a saturated sandy soil, active membrane surface areas reach only 40.3% of the probe surface area, perhaps due to occlusion by soil particles. However, when accounting for volumetric water content of the soil, active surface areas approached 80-90% of the area likely in contact with water, indicating that sampling efficiency of waterfilled pores may still be high, particularly at slow flow rates. Furthermore, our method enables assessment of local soil water content around the probe. Models estimating soil water content were applied to field measurements of DHO exchange in three soil horizons (Organic, B1, B2) at two boreal sites, and in situ estimates were similar to those from conventional soil moisture methods when models were calibrated with the same soil type. We present DHO exchange as a powerful method for improving microdialysis flux interpretations in future studies, and for exploring small-scale water variability in relatively undisturbed soils

    Impact of SO2 on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing

    Get PDF
    Hamisch D, Randewig D, Schliesky S, et al. Impact of SO2 on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing. New Phytologist. 2012;196(4):1074-1085.High concentrations of sulfur dioxide (SO2) as an air pollutant, and its derivative sulfite, cause abiotic stress that can lead to cell death. It is currently unknown to what extent plant fumigation triggers specific transcriptional responses. To address this question, and to test the hypothesis that sulfite oxidase (SO) is acting in SO2 detoxification, we compared Arabidopsis wildtype (WT) and SO knockout lines (SO-KO) facing the impact of 600 nl l (1) SO2, using RNAseq to quantify absolute transcript abundances. These transcriptome data were correlated to sulfur metabolism-related enzyme activities and metabolites obtained from identical samples in a previous study. SO-KO plants exhibited remarkable and broad regulative responses at the mRNA level, especially in transcripts related to sulfur metabolism enzymes, but also in those related to stress response and senescence. Focusing on SO regulation, no alterations were detectable in the WT, whereas in SO-KO plants we found up-regulation of two splice variants of the SO gene, although this gene is not functional in this line. Our data provide evidence for the highly specific coregulation between SO and sulfur-related enzymes like APS reductase, and suggest two novel candidates for involvement in SO2 detoxification: an apoplastic peroxidase, and defensins as putative cysteine mass storages
    corecore