513 research outputs found

    Accessing the strong interaction between Λ baryons and charged kaons with the femtoscopy technique at the LHC

    Get PDF
    The interaction between Λ baryons and kaons/antikaons is a crucial ingredient for the strangeness S=0 and S=-2 sector of the meson–baryon interaction at low energies. In particular, the Lambda-Kbar might help in understanding the origin of states such as the Csi(1620), whose nature and properties are still under debate. Experimental data on Lambda-K and Lambda-Kbar systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of Λ–KK− and Λ–KK+ correlations obtained in the high-multiplicity triggered data sample in pp collisions at sqrt(s) = 13 TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednický–Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The Λ–KK+ correlations show the presence of several structures at relative momenta k* above 200 MeV/c, compatible with the Ω baryon, the , and resonances decaying into Λ–K− pairs. The low k* region in the Λ–KK+ also exhibits the presence of the state, expected to strongly couple to the measured pair. The presented data allow to access the ΛK+ and ΛK− strong interaction with an unprecedented precision and deliver the first experimental observation of the decaying into ΛK−

    Closing in on critical net-baryon fluctuations at LHC energies: Cumulants up to third order in Pb–Pb collisions

    Get PDF
    Fluctuation measurements are important sources of information on the mechanism of particle production at LHC energies. This article reports the first experimental results on third-order cumulants of the net-proton distributions in Pb-Pb collisions at a center-of-mass energy √sNN = 5.02 TeV recorded by the ALICE detector. The results on the second-order cumulants of net-proton distributions at √sNN = 2.76 and 5.02TeV are also discussed in view of effects due to the global and local baryon number conservation. The results demonstrate the presence of long-range rapidity correlations between protons and antiprotons. Such correlations originate from the early phase of the collision. The experimental results are compared with HIJING and EPOS model calculations, and the dependence of the fluctuation measurements on the phase-space coverage is examined in the context of lattice quantum chromodynamics (LQCD) and hadron resonance gas (HRG) model estimations. The measured third-order cumulants are consistent with zero within experimental uncertainties of about 4% and are described well by LQCD and HRG predictions

    First measurement of prompt and non-prompt D⁎+ vector meson spin alignment in pp collisions at s=13 TeV

    Get PDF
    This letter reports the first measurement of spin alignment, with respect to the helicity axis, for D*+ vector mesons and their charge conjugates from charm-quark hadronisation (prompt) and from beauty-meson decays (non-prompt) in hadron collisions. The measurements were performed at midrapidity (|y| D0 (-> K- pi+) pi+ decay products, in the D*+ rest frame, with respect to the D*+ momentum direction in the pp centre of mass frame. The rho_00 value for prompt D*+ mesons is consistent with 1/3, which implies no spin alignment. However, for non-prompt D*+ mesons an evidence of rho_00 larger than 1/3 is found. The measured value of the spin density element is in the interval, which is consistent with a Pythia 8 Monte Carlo simulation coupled with the EvtGen package, which implements the helicity conservation in the decay of D*+ meson from beauty mesons. In non-central heavy-ion collisions, the spin of the D*+ mesons may be globally aligned with the direction of the initial angular momentum and magnetic field. Based on the results for pp collisions reported in this letter it is shown that alignment of non-prompt D*+ mesons due to the helicity conservation coupled to the collective anisotropic expansion may mimic the signal of global spin alignment in heavy-ion collisions

    First Measurement of Antideuteron Number Fluctuations at Energies Available at the Large Hadron Collider

    Get PDF
    The first measurement of event-by-event antideuteron number fluctuations in high energy heavy-ion collisions is presented. The measurements are carried out at midrapidity (1?1 < 0.8) as a function of collision centrality in Pb-Pb collisions atv (NN)-N-s= 5.02 TeV using the ALICE detector. A significant negative correlation between the produced antiprotons and antideuterons is observed in all collision centralities. The results are compared with a state-of-the-art coalescence calculation. While it describes the ratio of higher order cumulants of the antideuteron multiplicity distribution, it fails to describe quantitatively the magnitude of the correlation between antiproton and antideuteron production. On the other hand, thermal-statistical model calculations describe all the measured observables within uncertainties only for correlation volumes that are different with respect to those describing proton yields and a similar measurement of net-proton number fluctuations

    Hypertriton Production in p-Pb Collisions at √sNN = 5.02 TeV

    Get PDF
    The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of the production of Λ3H{\rm ^{3}_{\Lambda}\rm H} in p-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 5.02 TeV is presented in this Letter. Its production yield measured in the rapidity interval -1 < y < 0 for the 40% highest multiplicity p-Pb collisions is dN/dy=[6.3±1.8(stat.)±1.2(syst.)]×107{\rm d} N /{\rm d} y =[\mathrm{6.3 \pm 1.8 (stat.) \pm 1.2 (syst.) ] \times 10^{-7}}. The measurement is compared with the expectations of statistical hadronisation and coalescence models, which describe the nucleosynthesis in hadronic collisions. These two models predict very different yields of the hypertriton in small collision systems such as p-Pb and therefore the measurement of dN/dy{\rm d} N /{\rm d} y is crucial to distinguish between them. The precision of this measurement leads to the exclusion with a significance larger than 6σ\sigma of some configurations of the statistical hadronisation, thus constraining the production mechanism of loosely bound states

    Multiplicity dependence of charged-particle production in pp, p–Pb, Xe–Xe and Pb–Pb collisions at the LHC

    Get PDF
    Multiplicity (Nch) distributions and transverse momentum (pT) spectra of inclusive primary charged particles in the kinematic range of |η| < 0.8 and 0.15 GeV/c < pT < 10 GeV/c are reported for pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-of-mass energies per nucleon pair ranging from √sNN = 2.76 TeV up to 13 TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the pT spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators.publishedVersio

    Measurement of the fraction of jet longitudinal momentum carried by Λc+ baryons in pp collisions

    Get PDF
    Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λc+ baryons, z∥ch, in hadronic collisions. The results are obtained in proton-proton (pp) collisions at s=13 TeV at the LHC, with Λc+ baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3≤pTΛc+&lt;15 GeV/c and 7≤pTjet ch&lt;15 GeV/c, respectively. The z∥ch distribution is compared to a measurement of D0-tagged charged jets in pp collisions as well as to pythia 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronization models which include color correlations beyond leading-color in the string formation

    Measurement of the Lifetime and Λ Separation Energy of _{Λ}^{3}H

    Get PDF
    The most precise measurements to date of the _{Λ}^{3}H lifetime τ and Λ separation energy B_{Λ} are obtained using the data sample of Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV collected by ALICE at the LHC. The _{Λ}^{3}H is reconstructed via its charged two-body mesonic decay channel (_{Λ}^{3}H→^{3}He+π^{-} and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and B_{Λ}=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the _{Λ}^{3}H structure is consistent with a weakly bound system

    General balance functions of identified charged hadron pairs of (pi,K,p) in Pb-Pb collisions at 2.76 TeV

    Get PDF
    First measurements of balance functions (BFs) of all combinations of identified charged hadron ( π , K, p) pairs in Pb–Pb collisions at √sNN = 2.76 TeV recorded by the ALICE detector are presented. The BF measurements are carried out as two-dimensional differential correlators versus the relative rapidity (delta-y) and azimuthal angle (delta-φ) of hadron pairs, and studied as a function of collision centrality. The delta-φ dependence of BFs is expected to be sensitive to the light quark diffusivity in the quark–gluon plasma. While the BF azimuthal widths of all pairs substantially decrease from peripheral to central collisions, the longitudinal widths exhibit mixed behaviors: BFs of π π and cross-species pairs narrow significantly in more central collisions, whereas those of KK and pp are found to be independent of collision centrality. This dichotomy is qualitatively consistent with the presence of strong radial flow effects and the existence of two stages of quark production in relativistic heavy-ion collisions. Finally, the first measurements of the collision centrality evolution of BF integrals are presented, with the observation that charge balancing fractions are nearly independent of collision centrality in Pb–Pb collisions. Overall, the results presented provide new and challenging constraints for theoretical models of hadron production and transport in relativistic heavy-ion collisions

    Measurement of anti-3He nuclei absorption in matter and impact on their propagation in the Galaxy

    Get PDF
    In our Galaxy, light antinuclei composed of antiprotons and antineutrons can be produced through high-energy cosmic-ray collisions with the interstellar medium or could also originate from the annihilation of dark-matter particles that have not yet been discovered. On Earth, the only way to produce and study antinuclei with high precision is to create them at high-energy particle accelerators. Although the properties of elementary antiparticles have been studied in detail, the knowledge of the interaction of light antinuclei with matter is limited. We determine the disappearance probability of anti-3He when it encounters matter particles and annihilates or disintegrates within the ALICE detector at the Large Hadron Collider. We extract the inelastic interaction cross section, which is then used as an input to the calculations of the transparency of our Galaxy to the propagation of anti-3He stemming from dark-matter annihilation and cosmic-ray interactions within the interstellar medium. For a specific dark-matter profile, we estimate a transparency of about 50%, whereas it varies with increasing anti-3He momentum from 25% to 90% for cosmic-ray sources. The results indicate that anti-3He nuclei can travel long distances in the Galaxy, and can be used to study cosmic-ray interactions and dark-matter annihilation
    corecore