2,372 research outputs found
A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a
The merging neutron star gravitational wave event GW170817 has been observed
throughout the entire electromagnetic spectrum from radio waves to
-rays. The resulting energetics, variability, and light curves are
shown to be consistent with GW170817 originating from the merger of two neutron
stars, in all likelihood followed by the prompt gravitational collapse of the
massive remnant. The available -ray, X-ray and radio data provide a
clear probe for the nature of the relativistic ejecta and the non-thermal
processes occurring within, while the ultraviolet, optical and infrared
emission are shown to probe material torn during the merger and subsequently
heated by the decay of freshly synthesized -process material. The simplest
hypothesis that the non-thermal emission is due to a low-luminosity short
-ray burst (sGRB) seems to agree with the present data. While low
luminosity sGRBs might be common, we show here that the collective prompt and
multi-wavelength observations are also consistent with a typical, powerful sGRB
seen off-axis. Detailed follow-up observations are thus essential before we can
place stringent constraints on the nature of the relativistic ejecta in
GW170817.Comment: 9 pages, 5 figures, accepted to ApJ Letter
Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A
We present observations of the possible short GRB 180418A in -rays,
X-rays, and in the optical. Early optical photometry with the TAROT and RATIR
instruments show a bright peak ( 14.2 AB mag) between and
seconds that we interpret as the signature of a reversal shock. Later
observations can be modeled by a standard forward shock model and show no
evidence of jet break, allowing us to constrain the jet collimation to
. Using deep late-time optical observations we place an
upper limit of AB mag on any underlying host galaxy. The detection of
the afterglow in the \textit{Swift} UV filters constrains the GRB redshift to
and places an upper bound on the -ray isotropic equivalent
energy erg.
The properties of this GRB (e.g. duration, hardness ratio, energetic, and
environment) lie at the intersection between short and long bursts, and we can
not conclusively identify its type. We estimate that the probability that it is
drawn from the population of short GRBs is 10\%-30\%.Comment: Accepted por publication in Ap
Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger
11 hours after the detection of gravitational wave source GW170817 by the
Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers,
an associated optical transient SSS17a was discovered in the galaxy NGC 4993.
While the gravitational wave data indicate GW170817 is consistent with the
merger of two compact objects, the electromagnetic observations provide
independent constraints of the nature of that system. Here we synthesize all
optical and near-infrared photometry and spectroscopy of SSS17a collected by
the One-Meter Two-Hemisphere collaboration. We find that SSS17a is unlike other
known transients. The source is best described by theoretical models of a
kilonova consisting of radioactive elements produced by rapid neutron capture
(the r-process). We find that SSS17a was the result of a binary neutron star
merger, reinforcing the gravitational wave result.Comment: 21 pages, 4 figures, accepted to Scienc
Clade C HIV-1 isolates circulating in Southern Africa exhibit a greater frequency of dicysteine motif-containing Tat variants than those in Southeast Asia and cause increased neurovirulence
Background: HIV-1 Clade C (Subtype C; HIV-1C) is responsible for greater than 50% of infections worldwide. Unlike clade B HIV-1 (Subtype B; HIV-1B), which is known to cause HIV associated dementia (HAD) in approximately 15% to 30% of the infected individuals, HIV-1C has been linked with lower prevalence of HAD (0 to 6%) in India and Ethiopia. However, recent studies report a higher prevalence of HAD in South Africa, Zambia and Botswana, where HIV-1C infections predominate. Therefore, we examined whether Southern African HIV-1C is genetically distinct and investigated its neurovirulence. HIV-1 Tat protein is a viral determinant of neurocognitive dysfunction. Therefore, we focused our study on the variations seen in tat gene and its contribution to HIV associated neuropathogenesis. Results: A phylogenetic analysis of tat sequences of Southern African (South Africa and Zambia) HIV isolates with those from the geographically distant Southeast Asian (India and Bangladesh) isolates revealed that Southern African tat sequences are distinct from Southeast Asian isolates. The proportion of HIV â 1C variants with an intact dicysteine motif in Tat protein (C30C31) was significantly higher in the Southern African countries compared to Southeast Asia and broadly paralleled the high incidence of HAD in these countries. Neuropathogenic potential of a Southern African HIV-1C isolate (from Zambia; HIV-1C1084i), a HIV-1C isolate (HIV-1IndieC1) from Southeast Asia and a HIV-1B isolate (HIV-1ADA) from the US were tested using in vitro assays to measure neurovirulence and a SCID mouse HIV encephalitis model to measure cognitive deficits. In vitro assays revealed that the Southern African isolate, HIV-1C1084i exhibited increased monocyte chemotaxis and greater neurotoxicity compared to Southeast Asian HIV-1C. In neurocognitive tests, SCID mice injected with MDM infected with Southern African HIV-1C1084i showed greater cognitive dysfunction similar to HIV-1B but much higher than those exposed to Southeast Asian HIV â 1C. Conclusions: We report here, for the first time, that HIV-1C from Southern African countries is genetically distinct from Southeast Asian HIV-1C and that it exhibits a high frequency of variants with dicysteine motif in a key neurotoxic HIV protein, Tat. Our results indicate that Tat dicysteine motif determines neurovirulence. If confirmed in population studies, it may be possible to predict neurocognitive outcomes of individuals infected with HIV-1C by genotyping Tat
Transcription factor and microRNA interactions in lung cells: an inhibitory link between NK2 homeobox 1, miR-200c and the developmental and oncogenic factors Nfib and Myb
Background:
The transcription factor NK2 homeobox 1 (Nkx2-1) plays essential roles in epithelial cell proliferation and differentiation in mouse and human lung development and tumorigenesis. A better understanding of genes and pathways downstream of Nkx2-1 will clarify the multiple roles of this critical lung factor. Nkx2-1 regulates directly or indirectly numerous protein-coding genes; however, there is a paucity of information about Nkx2-1-regulated microRNAs (miRNAs).
Methods and results:
By miRNA array analyses of mouse epithelial cell lines in which endogenous Nkx2-1 was knocked-down, we revealed that 29 miRNAs were negatively regulated including miR-200c, and 39 miRNAs were positively regulated by Nkx2-1 including miR-1195. Mouse lungs lacking functional phosphorylated Nkx2-1 showed increased expression of miR-200c and alterations in the expression of other top regulated miRNAs. Moreover, chromatin immunoprecipitation assays showed binding of NKX2-1 protein to regulatory regions of these miRNAs. Promoter reporter assays indicated that 1kb of the miR-200c 5âČ flanking region was transcriptionally active but did not mediate Nkx2-1- repression of miR-200c expression. 3âČUTR reporter assays support a direct regulation of the predicted targets Nfib and Myb by miR-200c.
Conclusions:
These studies suggest that Nkx2-1 controls the expression of specific miRNAs in lung epithelial cells. In particular, we identified a regulatory link between Nkx2-1, the known tumor suppressor miR-200c, and the developmental and oncogenic transcription factors Nfib and Myb, adding new players to the regulatory mechanisms driven by Nkx2-1 in lung epithelial cells that may have implications in lung development and tumorigenesis.
Keywords:
microRNA Transcription factors Gene expression Lung epithelial cells Target
Admixture mapping implicates 13q33.3 as ancestry-of-origin locus for Alzheimer disease in Hispanic and Latino populations
Alzheimer disease (AD) is the most common form of senile dementia, with high incidence late in life in many populations including Caribbean Hispanic (CH) populations. Such admixed populations, descended from more than one ancestral population, can present challenges for genetic studies, including limited sample sizes and unique analytical constraints. Therefore, CH populations and other admixed populations have not been well represented in studies of AD, and much of the genetic variation contributing to AD risk in these populations remains unknown. Here, we conduct genome-wide analysis of AD in multiplex CH families from the Alzheimer Disease Sequencing Project (ADSP). We developed, validated, and applied an implementation of a logistic mixed model for admixture mapping with binary traits that leverages genetic ancestry to identify ancestry-of-origin loci contributing to AD. We identified three loci on chromosome 13q33.3 associated with reduced risk of AD, where associations were driven by Native American (NAM) ancestry. This AD admixture mapping signal spans the FAM155A, ABHD13, TNFSF13B, LIG4, and MYO16 genes and was supported by evidence for association in an independent sample from the Alzheimer's Genetics in ArgentinaâAlzheimer Argentina consortium (AGA-ALZAR) study with considerable NAM ancestry. We also provide evidence of NAM haplotypes and key variants within 13q33.3 that segregate with AD in the ADSP whole-genome sequencing data. Interestingly, the widely used genome-wide association study approach failed to identify associations in this region. Our findings underscore the potential of leveraging genetic ancestry diversity in recently admixed populations to improve genetic mapping, in this case for AD-relevant loci.Fil: Horimoto, Andrea R.V.R.. University of Washington; Estados UnidosFil: Boyken, Lisa A.. University of Washington; Estados UnidosFil: Blue, Elizabeth E.. University of Washington; Estados Unidos. Brotman Baty Institute for Precision Medicine; Estados UnidosFil: Grinde, Kelsey E.. University of Washington; Estados Unidos. Macalester College; Estados UnidosFil: Nafikov, Rafael A.. University of Washington; Estados UnidosFil: Sohi, Harkirat K.. University of Washington; Estados UnidosFil: Nato, Alejandro Q.. University of Washington; Estados Unidos. Marshall University; Estados UnidosFil: Bis, Joshua C.. University of Washington; Estados UnidosFil: Brusco, Luis Ignacio. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Morelli, Laura. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BioquĂmicas de Buenos Aires. FundaciĂłn Instituto Leloir. Instituto de Investigaciones BioquĂmicas de Buenos Aires; ArgentinaFil: Ramirez, Alfredo Jose. University Of Cologne; Alemania. Universitat Bonn; Alemania. German Center for Neurodegenerative Diseases; Alemania. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. NĂ©stor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; ArgentinaFil: Dalmasso, Maria Carolina. Universidad Nacional Arturo Jauretche. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Provincia de Buenos Aires. Ministerio de Salud. Hospital Alta Complejidad en Red El Cruce Dr. NĂ©stor Carlos Kirchner Samic. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos; Argentina. University Of Cologne; AlemaniaFil: Temple, Seth. University of Washington; Estados UnidosFil: Satizabal, Claudia. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . University of Texas at San Antonio; Estados UnidosFil: Browning, Sharon R.. University of Washington; Estados UnidosFil: Seshadri, Sudha. University Of Texas Health Science Center At San Antonio (ut Health San Antonio) ; University Of Texas At San Antonio; . University of Texas at San Antonio; Estados UnidosFil: Wijsman, Ellen M.. University of Washington; Estados UnidosFil: Thornton, Timothy A.. University of Washington; Estados Unido
Machine-Learning Enhanced Photometric Analysis of the Extremely Bright GRB 210822A
We present analytical and numerical models of the bright long GRB 210822A at
. The intrinsic extreme brightness exhibited in the optical, which is
very similar to other bright GRBs (e.g., GRBs 080319B, 130427A, 160625A
190114C, and 221009A), makes GRB 210822A an ideal case for studying the
evolution of this particular kind of GRB. We use optical data from the RATIR
instrument starting at s, with publicly available optical data from
other ground-based observatories, as well as X-ray data from the Swift/X-ray
Telescope (XRT) and data from the Swift/Ultraviolet/Optical Telescope (UVOT).
The temporal profiles and spectral properties during the late stages align
consistently with the conventional forward shock model, complemented by a
reverse shock element that dominates optical emissions during the initial
phases ( s). Furthermore, we observe a break at s that we
interpreted as evidence of a jet break, which constrains the opening angle to
be about degrees. Finally, we apply a
machine-learning technique to model the multi-wavelength light curve of GRB
210822A using the AFTERGLOWPY library. We estimate the angle of sight
degrees, the energy ergs, the electron index , the thermal
energy fraction in electrons and in
the magnetic field , the efficiency
, and the density of the surrounding medium .Comment: Submitted to MNRAS, 11 pages, 6 figures. Fixed typo
Multi-Messenger Astronomy with Extremely Large Telescopes
The field of time-domain astrophysics has entered the era of Multi-messenger
Astronomy (MMA). One key science goal for the next decade (and beyond) will be
to characterize gravitational wave (GW) and neutrino sources using the next
generation of Extremely Large Telescopes (ELTs). These studies will have a
broad impact across astrophysics, informing our knowledge of the production and
enrichment history of the heaviest chemical elements, constrain the dense
matter equation of state, provide independent constraints on cosmology,
increase our understanding of particle acceleration in shocks and jets, and
study the lives of black holes in the universe. Future GW detectors will
greatly improve their sensitivity during the coming decade, as will
near-infrared telescopes capable of independently finding kilonovae from
neutron star mergers. However, the electromagnetic counterparts to
high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus
demand ELT capabilities for characterization. ELTs will be important and
necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve
PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy
We present the discovery and characterisation of PTF10iya, a short-lived (dt
~ 10 d, with an optical decay rate of ~ 0.3 mag per d), luminous (M_g ~ -21
mag) transient source found by the Palomar Transient Factory. The
ultraviolet/optical spectral energy distribution is reasonably well fit by a
blackbody with T ~ 1-2 x 10^4 K and peak bolometric luminosity L_BB ~ 1-5 x
10^44 erg per s (depending on the details of the extinction correction). A
comparable amount of energy is radiated in the X-ray band that appears to
result from a distinct physical process. The location of PTF10iya is consistent
with the nucleus of a star-forming galaxy (z = 0.22405 +/- 0.00006) to within
350 mas (99.7 per cent confidence radius), or a projected distance of less than
1.2 kpc. At first glance, these properties appear reminiscent of the
characteristic "big blue bump" seen in the near-ultraviolet spectra of many
active galactic nuclei (AGNs). However, emission-line diagnostics of the host
galaxy, along with a historical light curve extending back to 2007, show no
evidence for AGN-like activity. We therefore consider whether the tidal
disruption of a star by an otherwise quiescent supermassive black hole may
account for our observations. Though with limited temporal information,
PTF10iya appears broadly consistent with the predictions for the early
"super-Eddington" phase of a solar-type star disrupted by a ~ 10^7 M_sun black
hole. Regardless of the precise physical origin of the accreting material, the
large luminosity and short duration suggest that otherwise quiescent galaxies
can transition extremely rapidly to radiate near the Eddington limit; many such
outbursts may have been missed by previous surveys lacking sufficient cadence.Comment: 18 pages, 8 figures; revised following referee's comment
- âŠ