21 research outputs found

    Exposure to environmental stressors result in increased viral load and further reduction of production parameters in pigs experimentally infected with PCV2b

    Get PDF
    Porcine circovirus type 2 (PCV2) has been identified as the essential, but not sole, underlying infectious component for PCV-associated diseases (PCVAD). Several co-factors have been suggested to convert an infection with PCV2 into the clinical signs of PCVAD, including co-infection with a secondary pathogen and the genetic background of the pig. In the present study, we investigated the role of environmental stressors in the form of changes in environmental temperature and increased stocking-density on viral load in serum and tissue, average daily weight gain (ADG) and food conversion rate (FCR) of pigs experimentally infected with a defined PCV2b strain over an eight week period. These stressors were identified recently as risk factors leading to the occurrence of severe PCVAD on a farm level. In the current study, PCV2-free pigs were housed in separate, environmentally controlled rooms, and the experiment was performed in a 2 × 2 factorial design. In general, PCV2b infection reduced ADG and increased FCR, and these were further impacted on by the environmental stressors. Furthermore, all stressors led to an increased viral load in serum and tissue as assessed by qPCR, although levels did not reach statistical significance. Our data suggest that there is no need for an additional pathogen to develop PCVAD in conventional status pigs, and growth retardation and clinical signs can be induced in PCV2 infected pigs that are exposed to environmental stressors alone

    Skeletal muscle metabolomics and blood biochemistry analysis reveal metabolic changes associated with dietary amino acid supplementation in dairy calves

    Get PDF
    The effects of different amino acid (AA) supplementations of milk protein-based milk replacers in pre-ruminant calves from 3 days to 7 weeks of age were studied. Animals were divided into 4 groups: Ctrl) Control group fed with milk protein-based milk replacer without supplementation; GP) supplementation with 0.1% glycine and 0.3% proline; FY) supplementation with 0.2% phenylalanine and 0.2% tyrosine; MKT) supplementation with 0.62% lysine, 0.22% methionine and 0.61% threonine. For statistical analysis, t-test was used to compare AA-supplemented animals to the Ctrl group. At week 7, body weight and average daily gain (ADG) were measured and blood samples and skeletal muscle biopsies were taken. Blood biochemistry analytes related to energy metabolism were determined and it was shown that MKT group had higher serum creatinine and higher plasma concentration of three supplemented AAs as well as arginine compared with the Ctrl group. GP group had similar glycine/proline plasma concentration compared with the other groups while in FY group only plasma phenylalanine concentration was higher compared with Control. Although the AA supplementations in the GP and FY groups did not affect average daily gain and metabolic health profile from serum, the metabolome analysis from skeletal muscle biopsy revealed several differences between the GP-FY groups and the Ctrl-MKT groups, suggesting a metabolic adaptation especially in GP and FY groupsinfo:eu-repo/semantics/publishedVersio

    Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context

    Get PDF
    Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public. In a context in which animal and human health are intertwined aspects of the one-health concept it is of utmost importance to define the markers of stress and welfare. These are important tools for producers, retailers, regulatory agents and ultimately consumers to effectively monitor and assess the welfare state of production animals. Proteomics is the science that studies the proteins existing in a given tissue or fluid. In this review we address this topic by showing clear examples where proteomics has been used to study stress-induced changes at various levels. We adopt a multi-species (cattle, swine, small ruminants, poultry, fish and shellfish) approach under the effect of various stress inducers (handling, transport, management, nutritional, thermal and exposure to pollutants) clearly demonstrating how proteomics and systems biology are key elements to the study of stress and welfare in farm animals and powerful tools for animal welfare, health and productivity
    corecore