659 research outputs found
Recommended from our members
EM-PIC simulations of e-beam interaction with field emitted ions from bremsstrahlung targets
We investigate electron beam defocusing caused by field emitted ions from the bremsstrahlung target of a radiography machine using fully electromagnetic particle-in-cell simulations. This possibly deleterious effect is relevant to both current radiography machines (FXR) and machines being built (DARHT-2) or planned (AHF). A simple theory of the acceleration of ions desorbed from the heated target, and subsequent beam defocusing due to partial charge neutralization is in reasonable agreement with the more detailed simulations. For parameters corresponding to FXR (I{sub b}=2.3 kA, {epsilon}{sub b}=16 MeV), simulations assuming space-charge-limited emission of protons predict prompt beam defocusing. Time integrated spot-size measurement, however, is dominated by early-time small spot brightness, and so is not a sensitive diagnostic. Comparisons are made to available FXR data. We also investigate use of a recessed target geometry to mitigate field emitted ion acceleration; only modest improvements are predicted
Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.
The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources
Recommended from our members
Spall And Dynamic Yielding Of Aluminum And Aluminum Alloys At Strain Rates Of 3X10(6) S(-1)
We have explored the role that grain size, impurity particles and alloying in aluminum play in dynamic yielding and spall fracture at tensile strain rates of similar to 3x10(6) We achieved these strain rates shocking the aluminum specimens via laser ablation using the Z-Beamlet Laser at Sandia National Laboratories. The high purity aluminum and 1100 series aluminum alloy produced very different spall strengths and nearly the same yield strengths. In contrast, various grain-sized Al + 3 wt. % Mg specimens presented the lowest spall strength, but the greatest dynamic yield strength. Fracture morphology results and particle analysis are presented along with hydrodynamic simulations to put these results in context. Impurity particles appeared to play a vital role in spall fracture at these fast strain rates. Alloying elements such as Mg seem to be the dominant factor in the dynamic yield results.Mechanical Engineerin
Recommended from our members
Laser-Induced Spall Of Aluminum And Aluminum Alloys At High Strain Rates
We conducted laser-induced spall experiments aimed at studying how a material's microstructure affects the tensile fracture characteristics at high strain rates (> 10(6) s(-1)). We used the Z-Beamlet Laser at Sandia National Laboratory to drive shocks and to measure the spall strength of aluminum targets with various microstructures. The targets were recrystallized, high-purity aluminum (Al-HP RX), recrystallized aluminum + 3 wt.% magnesium (Al-3Mg RX), and cold-worked aluminum + 3 wt.% magnesium (Al-3Mg CW). The Al-3Mg RX and Al-3Mg CW are used to explore the roles that solid-solution alloying and cold-work strengthening play in the spall process. Using a line-VISAR (Velocity Interferometer System for Any Reflector) and analysis of recovered samples, we were able to measure spall strength and determine failure morphology in these targets. We find that the spall strength is highest for Al-HP RX. Analysis reveals that material grain size plays a vital role in the fracture morphology and spall strength results.Mechanical Engineerin
Small-angle X-ray Scattering Studies of the Oligomeric State and Quaternary Structure of the Trifunctional Proline Utilization A (PutA) Flavoprotein from \u3ci\u3eEscherichia coli\u3c/i\u3e
Background: Trifunctional proline utilization A (PutA) proteins are multifunctional flavoproteins that catalyze two reactions and repress transcription of the put regulon.
Results: PutA from Escherichia coli is a V-shaped dimer, with the DNA-binding domain mediating dimerization.
Conclusion: Oligomeric state and quaternary structures are not conserved by PutAs.
Significance: The first three-dimensional structural information for any trifunctional PutA is reported
Small-angle X-ray Scattering Studies of the Oligomeric State and Quaternary Structure of the Trifunctional Proline Utilization A (PutA) Flavoprotein from \u3ci\u3eEscherichia coli\u3c/i\u3e
Background: Trifunctional proline utilization A (PutA) proteins are multifunctional flavoproteins that catalyze two reactions and repress transcription of the put regulon.
Results: PutA from Escherichia coli is a V-shaped dimer, with the DNA-binding domain mediating dimerization.
Conclusion: Oligomeric state and quaternary structures are not conserved by PutAs.
Significance: The first three-dimensional structural information for any trifunctional PutA is reported
Exclusive measurement of coherent eta photoproduction from the deuteron
Coherent photoproduction of eta mesons from the deuteron has been measured
from threshold up to incident photon energies of 750 MeV using the photon
spectrometer TAPS at the tagged photon facility at the Mainz microtron MAMI.
For the first time, differential coherent cross sections have been deduced from
the coincident detection of the eta meson and the recoil deuteron. A missing
energy analysis was used for the suppression of background events so that a
very clean identification of coherent eta-photoproduction was achieved. The
resulting cross sections agree with previous experimental results except for
angles around 90 deg in the photon-deuteron cm-system where they are smaller.
They are compared to various model calculations.Comment: 4 pages, 4 figure
Molecular basis for SMC rod formation and its dissolution upon DNA binding.
SMC condensin complexes are central modulators of chromosome superstructure in all branches of life. Their SMC subunits form a long intramolecular coiled coil, which connects a constitutive "hinge" dimerization domain with an ATP-regulated "head" dimerization module. Here, we address the structural arrangement of the long coiled coils in SMC complexes. We unequivocally show that prokaryotic Smc-ScpAB, eukaryotic condensin, and possibly also cohesin form rod-like structures, with their coiled coils being closely juxtaposed and accurately anchored to the hinge. Upon ATP-induced binding of DNA to the hinge, however, Smc switches to a more open configuration. Our data suggest that a long-distance structural transition is transmitted from the Smc head domains to regulate Smc-ScpAB's association with DNA. These findings uncover a conserved architectural theme in SMC complexes, provide a mechanistic basis for Smc's dynamic engagement with chromosomes, and offer a molecular explanation for defects in Cornelia de Lange syndrome
Recommended from our members
Self-assembly, antimicrobial activity, and membrane interactions of arginine-capped peptide bola-amphiphiles
The self-assembly and antimicrobial activity of two novel arginine-capped bola-amphiphile peptides, namely RA6R and RA9R (R, arginine; A, alanine) are investigated. RA6R does not self-assemble in water due to its high solubility, but RA9R self-assembles above a critical aggregation concentration into ordered nanofibers due to the high hydrophobicity of the A9block. The structure of the RA9R nanofibers is studied by cryogenic transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). Circular dichroism spectroscopy shows that both RA6R and RA9R adopt coil conformations in water at low concentration, but only RA9R adopts a β-sheet conformation at high concentration. SAXS and differential scanning calorimetry are used to study RA6R and RA9R interactions with a mixed lipid membrane that models a bacterial cell wall, consisting of multilamellar 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol/1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine vesicles. Cytotoxicity studies show that RA6R is more cytocompatible than RA9R. RA6R has enhanced activity against the Gram-negative pathogen P. aeruginosa at a concentration where viability of mammalian cells is retained. RA9R has little antimicrobial activity, independently of concentration. Our results highlight the influence of the interplay between relative charge and hydrophobicity on the self-assembly, cytocompatibility, and bioactivity of peptide bola-amphiphiles
- …