31 research outputs found

    Euclid: modelling massive neutrinos in cosmology - a code comparison

    Get PDF

    Euclid: Modelling massive neutrinos in cosmology -- a code comparison

    Get PDF
    The measurement of the absolute neutrino mass scale from cosmological large-scale clustering data is one of the key science goals of the Euclid mission. Such a measurement relies on precise modelling of the impact of neutrinos on structure formation, which can be studied with NN-body simulations. Here we present the results from a major code comparison effort to establish the maturity and reliability of numerical methods for treating massive neutrinos. The comparison includes eleven full NN-body implementations (not all of them independent), two NN-body schemes with approximate time integration, and four additional codes that directly predict or emulate the matter power spectrum. Using a common set of initial data we quantify the relative agreement on the nonlinear power spectrum of cold dark matter and baryons and, for the NN-body codes, also the relative agreement on the bispectrum, halo mass function, and halo bias. We find that the different numerical implementations produce fully consistent results. We can therefore be confident that we can model the impact of massive neutrinos at the sub-percent level in the most common summary statistics. We also provide a code validation pipeline for future reference.Comment: 43 pages, 17 figures, 2 tables; published on behalf of the Euclid Consortium; data available at https://doi.org/10.5281/zenodo.729797

    Epigenetics and lifestyle: the impact of stress, diet and social habits on tissue homeostasis

    No full text
    CapĂ­tulo 19.The way that we live influences our health, and during our lifespan we are exposed to a great diversity of compounds and stresses. There is growing evidence of epigenetic alterations that appear associated with external cues, however, the functional role that epigenetic mechanisms play in the response to environmental stimuli remains to be clarified. In this chapter, we will discuss how our lifestyle influences the epigenome, paying special attention to our diet, bad habits, and the stress that we are subject to on a daily basis. These epigenetic changes can affect the homeostasis of our cells and tissues, possibly playing a role in the development of disease.Peer reviewe

    Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes

    No full text
    International audienceThe future Euclid space satellite mission will offer an invaluable opportunity to constrain modifications to general relativity at cosmic scales. We focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations while featuring different testable types of derivative screening mechanisms at smaller nonlinear scales. We consider 3 specific models, namely Jordan-Brans-Dicke (JBD), the normal branch of Dvali-Gabadadze-Porrati (nDGP) gravity and kk-mouflage (KM) gravity. We provide forecasts from spectroscopic and photometric primary probes by Euclid on the cosmological parameters and the extra parameters of the models, respectively, ωBD\omega_{\rm BD}, Ωrc\Omega_{\rm rc} and Ï”2,0\epsilon_{2,0}, which quantify the deviations from general relativity. This analysis will improve our knowledge of the cosmology of these modified gravity models. The forecasts analysis employs the Fisher matrix method applied to weak lensing (WL); photometric galaxy clustering (GCph_{ph}); spectroscopic galaxy clustering (GCsp_{sp}) and the cross-correlation (XC) between GCph_{ph} and WL. For the Euclid survey specifications we define three scenarios, characterised by different cuts in ℓ\ell and kk, to assess the constraining power of nonlinear scales. For each model we consider two fiducial values for the corresponding model parameter. In an optimistic setting at 68.3% confidence interval, with Euclid alone we find the following percentage relative errors: for log⁥10ωBD\log_{10}{\omega_{\rm BD}}, with a fiducial value of ωBD=800\omega_{\rm BD}=800, 35% using GCsp_{sp} alone, 3.6% using GCph_{ph}+WL+XC and 3.3% using GCph_{ph}+WL+XC+GCsp_{sp}; for log⁥10Ωrc\log_{10}{\Omega_{\rm rc}}, with a fiducial value of Ωrc=0.25\Omega_{\rm rc}=0.25, we find respectively 90%, 20% and 17%; finally, for Ï”2,0=−0.04\epsilon_{2,0}=-0.04 respectively 5%, 0.15% and 0.14%. (abridged

    Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes

    No full text
    International audienceThe future Euclid space satellite mission will offer an invaluable opportunity to constrain modifications to general relativity at cosmic scales. We focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations while featuring different testable types of derivative screening mechanisms at smaller nonlinear scales. We consider 3 specific models, namely Jordan-Brans-Dicke (JBD), the normal branch of Dvali-Gabadadze-Porrati (nDGP) gravity and kk-mouflage (KM) gravity. We provide forecasts from spectroscopic and photometric primary probes by Euclid on the cosmological parameters and the extra parameters of the models, respectively, ωBD\omega_{\rm BD}, Ωrc\Omega_{\rm rc} and Ï”2,0\epsilon_{2,0}, which quantify the deviations from general relativity. This analysis will improve our knowledge of the cosmology of these modified gravity models. The forecasts analysis employs the Fisher matrix method applied to weak lensing (WL); photometric galaxy clustering (GCph_{ph}); spectroscopic galaxy clustering (GCsp_{sp}) and the cross-correlation (XC) between GCph_{ph} and WL. For the Euclid survey specifications we define three scenarios, characterised by different cuts in ℓ\ell and kk, to assess the constraining power of nonlinear scales. For each model we consider two fiducial values for the corresponding model parameter. In an optimistic setting at 68.3% confidence interval, with Euclid alone we find the following percentage relative errors: for log⁥10ωBD\log_{10}{\omega_{\rm BD}}, with a fiducial value of ωBD=800\omega_{\rm BD}=800, 35% using GCsp_{sp} alone, 3.6% using GCph_{ph}+WL+XC and 3.3% using GCph_{ph}+WL+XC+GCsp_{sp}; for log⁥10Ωrc\log_{10}{\Omega_{\rm rc}}, with a fiducial value of Ωrc=0.25\Omega_{\rm rc}=0.25, we find respectively 90%, 20% and 17%; finally, for Ï”2,0=−0.04\epsilon_{2,0}=-0.04 respectively 5%, 0.15% and 0.14%. (abridged

    Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes

    No full text
    International audienceThe future Euclid space satellite mission will offer an invaluable opportunity to constrain modifications to general relativity at cosmic scales. We focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations while featuring different testable types of derivative screening mechanisms at smaller nonlinear scales. We consider 3 specific models, namely Jordan-Brans-Dicke (JBD), the normal branch of Dvali-Gabadadze-Porrati (nDGP) gravity and kk-mouflage (KM) gravity. We provide forecasts from spectroscopic and photometric primary probes by Euclid on the cosmological parameters and the extra parameters of the models, respectively, ωBD\omega_{\rm BD}, Ωrc\Omega_{\rm rc} and Ï”2,0\epsilon_{2,0}, which quantify the deviations from general relativity. This analysis will improve our knowledge of the cosmology of these modified gravity models. The forecasts analysis employs the Fisher matrix method applied to weak lensing (WL); photometric galaxy clustering (GCph_{ph}); spectroscopic galaxy clustering (GCsp_{sp}) and the cross-correlation (XC) between GCph_{ph} and WL. For the Euclid survey specifications we define three scenarios, characterised by different cuts in ℓ\ell and kk, to assess the constraining power of nonlinear scales. For each model we consider two fiducial values for the corresponding model parameter. In an optimistic setting at 68.3% confidence interval, with Euclid alone we find the following percentage relative errors: for log⁥10ωBD\log_{10}{\omega_{\rm BD}}, with a fiducial value of ωBD=800\omega_{\rm BD}=800, 35% using GCsp_{sp} alone, 3.6% using GCph_{ph}+WL+XC and 3.3% using GCph_{ph}+WL+XC+GCsp_{sp}; for log⁥10Ωrc\log_{10}{\Omega_{\rm rc}}, with a fiducial value of Ωrc=0.25\Omega_{\rm rc}=0.25, we find respectively 90%, 20% and 17%; finally, for Ï”2,0=−0.04\epsilon_{2,0}=-0.04 respectively 5%, 0.15% and 0.14%. (abridged

    Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes

    No full text
    International audienceThe future Euclid space satellite mission will offer an invaluable opportunity to constrain modifications to general relativity at cosmic scales. We focus on modified gravity models characterised, at linear scales, by a scale-independent growth of perturbations while featuring different testable types of derivative screening mechanisms at smaller nonlinear scales. We consider 3 specific models, namely Jordan-Brans-Dicke (JBD), the normal branch of Dvali-Gabadadze-Porrati (nDGP) gravity and kk-mouflage (KM) gravity. We provide forecasts from spectroscopic and photometric primary probes by Euclid on the cosmological parameters and the extra parameters of the models, respectively, ωBD\omega_{\rm BD}, Ωrc\Omega_{\rm rc} and Ï”2,0\epsilon_{2,0}, which quantify the deviations from general relativity. This analysis will improve our knowledge of the cosmology of these modified gravity models. The forecasts analysis employs the Fisher matrix method applied to weak lensing (WL); photometric galaxy clustering (GCph_{ph}); spectroscopic galaxy clustering (GCsp_{sp}) and the cross-correlation (XC) between GCph_{ph} and WL. For the Euclid survey specifications we define three scenarios, characterised by different cuts in ℓ\ell and kk, to assess the constraining power of nonlinear scales. For each model we consider two fiducial values for the corresponding model parameter. In an optimistic setting at 68.3% confidence interval, with Euclid alone we find the following percentage relative errors: for log⁥10ωBD\log_{10}{\omega_{\rm BD}}, with a fiducial value of ωBD=800\omega_{\rm BD}=800, 35% using GCsp_{sp} alone, 3.6% using GCph_{ph}+WL+XC and 3.3% using GCph_{ph}+WL+XC+GCsp_{sp}; for log⁥10Ωrc\log_{10}{\Omega_{\rm rc}}, with a fiducial value of Ωrc=0.25\Omega_{\rm rc}=0.25, we find respectively 90%, 20% and 17%; finally, for Ï”2,0=−0.04\epsilon_{2,0}=-0.04 respectively 5%, 0.15% and 0.14%. (abridged
    corecore