203 research outputs found

    Нове дослідження з історії Волині

    Get PDF
    Рецензія на книгу: Пахолок З. О., Несторук І. М. Миколай Крушевський і Волинь : каталог-довідник. – Луцьк : Волинянин, 2012. – 156 с. : іл

    Genetic structure of black rat populations in a rural plague focus in Madagascar

    Get PDF
    Correspondance: [email protected] genetic structure of reservoir populations is a key characteristic in understanding the persistence of infectious diseases in natural systems. In the Highlands of Madagascar, where plague has persisted since 1920, the black rat, Rattus rattus (L., 1758), is the sole species acting as a reservoir of the disease. Ecological surveys have shown a clear correlation between the locations of the plague-persistence area in Madagascar (above 800 m elevation) and the distribution area of one endemic plague vector, the flea Synopsyllus fonquerniei, which is found exclusively on rats living outdoors. This clear habitat segregation has led to the suggestion that R. rattus populations in the central highlands are divided into indoor- and outdoor-dwelling populations. Using eight microsatellite markers, we analysed the genetic structure of R. rattus populations living within a human plague focus in relation to habitat and geographic distance. We found that habitat by itself was not a structuring factor, unlike geographic distance. Nevertheless, the significant genotypic differentiation of R. rattus populations that was found at a fine spatial scale might relate to differences in population dynamics between rats in indoor and outdoor habitats

    Plague, a reemerging disease in Madagascar.

    Get PDF
    Human cases of plague, which had virtually disappeared in Madagascar after the 1930s, reappeared in 1990 with more than 200 confirmed or presumptive cases reported each year since. In the port of Mahajanga, plague has been reintroduced, and epidemics occur every year. In Antananarivo, the capital, the number of new cases has increased, and many rodents are infected with Yersinia pestis. Despite surveillance for the sensitivity of Y. pestis and fleas to drugs and insecticides and control measures to prevent the spread of sporadic cases, the elimination of plague has been difficult because the host and reservoir of the bacillus, Rattus rattus, is both a domestic and a sylvatic rat

    A Non-Stationary Relationship between Global Climate Phenomena and Human Plague Incidence in Madagascar

    Get PDF
    Acknowledgments We thank the Plague and Immunology Unit at the Institut Pasteur de Madagascar for data collection and management and supporting the study. Funding The analysis of the study was supported by the Leverhulme Trust Research Leadership Award F/0025/AC: ‘‘Predicting the effects of climate change on infectious diseases of animals’’ (awarded to MB). Funding for KSK was provided by a University of Liverpool PhD studentship award and for MB by BBSRC award ISIS 1813, ‘‘Climate change and the future of plague in Madagascar.’’ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Plague Circulation and Population Genetics of the Reservoir Rattus rattus: The Influence of Topographic Relief on the Distribution of the Disease within the Madagascan Focus.

    Get PDF
    International audienceBACKGROUND: Landscape may affect the distribution of infectious diseases by influencing the population density and dispersal of hosts and vectors. Plague (Yersinia pestis infection) is a highly virulent, re-emerging disease, the ecology of which has been scarcely studied in Africa. Human seroprevalence data for the major plague focus of Madagascar suggest that plague spreads heterogeneously across the landscape as a function of the relief. Plague is primarily a disease of rodents. We therefore investigated the relationship between disease distribution and the population genetic structure of the black rat, Rattus rattus, the main reservoir of plague in Madagascar. METHODOLOGYPRINCIPAL FINDINGS: We conducted a comparative study of plague seroprevalence and genetic structure (15 microsatellite markers) in rat populations from four geographic areas differing in topology, each covering about 150-200 km(2) within the Madagascan plague focus. The seroprevalence levels in the rat populations mimicked those previously reported for humans. As expected, rat populations clearly displayed a more marked genetic structure with increasing relief. However, the relationship between seroprevalence data and genetic structure differs between areas, suggesting that plague distribution is not related everywhere to the effective dispersal of rats. CONCLUSIONSSIGNIFICANCE: Genetic diversity estimates suggested that plague epizootics had only a weak impact on rat population sizes. In the highlands of Madagascar, plague dissemination cannot be accounted for solely by the effective dispersal of the reservoir. Human social activities may also be involved in spreading the disease in rat and human populations

    Epidemiologic Features of Four Successive Annual Outbreaks of Bubonic Plague in Mahajanga, Madagascar

    Get PDF
    From 1995 to 1998, outbreaks of bubonic plague occurred annually in the coastal city of Mahajanga, Madagascar. A total of 1,702 clinically suspected cases of bubonic plague were reported, including 515 laboratory confirmed by Yersinia pestis isolation (297), enzyme-linked immunosorbent assay, or both. Incidence was higher in males and young persons. Most buboes were inguinal, but children had a higher frequency of cervical or axillary buboes. Among laboratory-confirmed hospitalized patients, the case-fatality rate was 7.9%, although all Y. pestis isolates were sensitive to streptomycin, the recommended antibiotic. In this tropical city, plague outbreaks occur during the dry and cool season. Most cases are concentrated in the same crowded and insanitary districts, a result of close contact among humans, rats, and shrews. Plague remains an important public health problem in Madagascar, and the potential is substantial for spread to other coastal cities and abroad

    Plant-derived recombinant F1, V, and F1-V fusion antigens of Yersinia pestis activate human cells of the innate and adaptive immune system

    Get PDF
    Plague is still endemic in different regions of the world. Current vaccines raise concern for their side effects and limited protection, highlighting the need for an efficacious and rapidly producible vaccine. F1 and V antigens of Yersinia pestis, and F1-V fusion protein produced in Nicotiana benthamiana administered to guinea pigs resulted in immunity and protection against an aerosol challenge of virulent h pestis. We examined the effects of plant-derived F1, V, and F1-V on human cells of the innate immunity. F1, V, and F1-V proteins engaged TLR2 signalling and activated IL-6 and CXCL-8 production by monocytes, without affecting the expression of TNF-alpha, IL-12, IL-10, IL-1 beta, and CXCL10. Native F1 antigen and recombinant plant-derived F1 (rF1) and rF1-V all induced similar specific T-cell responses, as shown by their recognition by T-cells from subjects who recovered from E pestis infection. Native F1 and rF1 were equally well recognized by serum antibodies of Y. pestis-primed donors, whereas serological reactivity to rF1-V hybrid was lower, and that to rV was virtually absent. In conclusion, plant-derived F1, V, and F1-V antigens are weakly reactogenic for human monocytes and elicit cell-mediated and humoral responses similar to those raised by Y pestis infection

    First Isolation and Direct Evidence for the Existence of Large Small-Mammal Reservoirs of Leptospira sp. in Madagascar

    Get PDF
    Background: Leptospirosis has long been a major public health concern in the southwestern Indian Ocean. However, in Madagascar, only a few, old studies have provided indirect serological evidence of the disease in humans or animals. Methodology/Principal Findings: We conducted a large animal study focusing on small-mammal populations. Five field trapping surveys were carried out at five sites, from April 2008 to August 2009. Captures consisted of Rattus norvegicus (35.8%), R. rattus (35.1%), Mus musculus (20.5%) and Suncus murinus (8.6%). We used microbiological culture, serodiagnosis tests (MAT) and real-time PCR to assess Leptospira infection. Leptospira carriage was detected by PCR in 91 (33.9%) of the 268 small mammals, by MAT in 17 of the 151 (11.3%) animals for which serum samples were available and by culture in 9 of the 268 animals (3.3%). Rates of infection based on positive PCR results were significantly higher in Moramanga (54%), Toliara (48%) and Mahajanga (47.4%) than in Antsiranana (8.5%) and Toamasina (14%) (p = 0.001). The prevalence of Leptospira carriage was significantly higher in R. norvegicus (48.9%), S. murinus (43.5%) and R. rattus (30.8%) than in M. musculus (9.1%) (p < 0.001). The MAT detected antibodies against the serogroups Canicola and Icterohaemorrhagiae. Isolates were characterized by serology, secY sequence-based phylogeny, partial sequencing of rrs, multi-locus VNTR analysis and pulsed field gel electrophoresis. The 10 isolates obtained from nine rats were all identified as species L. interrogans serogroup Canicola serovar Kuwait and all had identical partial rrs and secY sequences. Conclusions/Significance: We present here the first direct evidence of widespread leptospiral carriage in small mammals in Madagascar. Our results strongly suggest a high level of environmental contamination, consistent with probable transmission of the infection to humans. This first isolation of pathogenic Leptospira strains in this country may significantly improve the detection of specific antibodies in human cases
    corecore