44 research outputs found

    Japanese Encephalitis, Singapore

    Get PDF
    10.3201/eid1203.051251Emerging Infectious Diseases123525-52

    Rapid diagnosis of dengue viremia by reverse transcriptase-polymerase chain reaction using 3\u27-noncoding region universal primers

    Get PDF
    A reverse transcriptase-polymerase chain reaction (RT-PCR) method was developed as a rapid diagnostic test of dengue viremia. To detect dengue viruses in serum or plasma specimens, a pair of universal primers was designed for use in the RT-PCR. Using these primers, the 3\u27-noncoding region of dengue virus types 1, 2, 3, and 4 could be amplified, but not those of other flaviviruses, such as West Nile virus, Japanese encephalitis virus, and yellow fever virus, or the alphavirus Sindbis virus. The sensitivity of the RT-PCR assay was similar to that of a quantitative fluorescent focus assay of dengue viruses in cell culture. Combining a silica method for RNA isolation and RT-PCR dengue virus could be detected in a 6-hr assay. In a preliminary study using this method, we detected dengue virus in 38 of 39 plasma specimens from which dengue virus had been isolated by mosquito inoculation. We then applied this method for detecting dengue viremia to 117 plasma samples from 62 children with acute febrile illnesses in a dengue-endemic area. We detected dengue viremia in 19 of 20 samples obtained on the day of presentation, which had been confirmed as acute dengue infection by mosquito inoculation and antibody responses. The overall sensitivity of this method was 91.4% (32 of 35; 95% confidence interval [CI] = 82.2-100%). The results from testing plasma samples from febrile nondengue patients showed a specificity of 95.4% (42 of 44; 95% CI = 89.3-100%)

    Recalibration of the limiting antigen avidity EIA to determine mean duration of recent infection in divergent HIV-1 subtypes.

    Get PDF
    ArticleBackground: Mean duration of recent infection (MDRI) and misclassification of long-term HIV-1 infections, as proportion false recent (PFR), are critical parameters for laboratory-based assays for estimating HIV-1 incidence. Recent review of the data by us and others indicated that MDRI of LAg-Avidity EIA estimated previously required recalibration. We present here results of recalibration efforts using >250 seroconversion panels and multiple statistical methods to ensure accuracy and consensus. Methods: A total of 2737 longitudinal specimens collected from 259 seroconverting individuals infected with diverse HIV-1 subtypes were tested with the LAg-Avidity EIA as previously described. Data were analyzed for determination of MDRI at ODn cutoffs of 1.0 to 2.0 using 7 statistical approaches and sub-analyzed by HIV-1 subtypes. In addition, 3740 specimens from individuals with infection >1 year, including 488 from patients with AIDS, were tested for PFR at varying cutoffs. Results: Using different statistical methods,MDRI values ranged from 88-94 days at cutoff ODn = 1.0 to 177-183 days at ODn = 2.0. The MDRI values were similar by different methods suggesting coherence of different approaches. Testing formisclassification among long-terminfections indicated that overall PFRs were 0.6%to 2.5%at increasing cutoffs of 1.0 to 2.0, respectively. Balancing the need for a longer MDRI and smaller PFR (<2.0%) suggests that a cutoff ODn = 1.5, corresponding to an MDRI of 130 days should be used for cross-sectional application. The MDRI varied among subtypes from 109 days (subtype A&D) to 152 days (subtype C). Conclusions: Based on the new data and revised analysis, we recommend an ODn cutoff = 1.5 to classify recent and long-term infections, corresponding to an MDRI of 130 days (118-142). Determination of revised parameters for estimation of HIV-1 incidence should facilitate application of the LAg-Avidity EIA for worldwide use.This research has been supported by the President’s Emergency Plan for AIDS Relief (PEPFAR) through the Centers for Disease Control and Prevention (CDC)

    Macaque models of human infectious disease.

    Get PDF
    Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents-bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease

    2nd International External Quality Control Assessment for the Molecular Diagnosis of Dengue Infections

    Get PDF
    Dengue viruses (DENV) are the most widespread arthropod-borne viruses which have shown an unexpected geographic expansion, as well as an increase in the number and severity of outbreaks in the last decades. In this context, the accurate diagnosis and reliable surveillance of dengue infections are essential. The laboratory diagnosis of dengue relies on the use of several methods detecting markers of DENV infection present in patient serum. Molecular diagnosis methods are usually rapid, sensitive, and simple when correctly standardized. Moreover, PCR-based diagnosis techniques are able to readily detect DENV during the acute phase of the disease and may assume an important role in dengue diagnosis and surveillance. Different reverse transcriptase PCR (RT-PCR) methods have been developed and are currently available and should be standardized in each laboratory to maintain high quality performance. In this work an External quality assessment (EQA) activity has been carried out to evaluate the accuracy and quality of laboratory data for the molecular diagnosis and surveillance of dengue, which involved worldwide dengue reference laboratories. In conclusion, RT-PCR techniques for dengue diagnosis applied by the participating laboratories demonstrated the need of further improvement in most laboratories

    Dengue: a continuing global threat.

    Get PDF
    Dengue fever and dengue haemorrhagic fever are important arthropod-borne viral diseases. Each year, there are ∼50 million dengue infections and ∼500,000 individuals are hospitalized with dengue haemorrhagic fever, mainly in Southeast Asia, the Pacific and the Americas. Illness is produced by any of the four dengue virus serotypes. A global strategy aimed at increasing the capacity for surveillance and outbreak response, changing behaviours and reducing the disease burden using integrated vector management in conjunction with early and accurate diagnosis has been advocated. Antiviral drugs and vaccines that are currently under development could also make an important contribution to dengue control in the future

    Dengue: a continuing global threat

    Full text link

    Herpes simplex virus type 1 mutant strain in1814 establishes a unique, slowly progressing infection in SCID mice.

    No full text
    Ocular infection of immunocompetent (BALB/c) mice with wild-type herpes simplex virus type 1 (HSV-1) 17+ may lead to acute fatal encephalitis; however, in surviving animals, a latent (nonproductive) infection of the nervous system is established. In contrast, 17+ infection invariably kills mice with severe combined immunodeficiency (SCID mice) within 2 weeks. Ocular infection of immunocompetent mice with a mutant HSV-1 strain, in1814, which does not produce a functional alpha-transinducing protein, results in no detectable viral replication in the nervous system during the time corresponding to the acute phase of infection, no mortality, and the establishment of latency. In SCID mice, however, the in1814 virus establishes a unique, slowly progressing infection. In studying the courses of in1814 infection in SCID and BALB/c mice, we found that although intact B- and/or T-lymphocytic functions were required for the control of viral replication in the nervous system, some of the infected neurons of SCID mice seemed to be able to restrict in1814 replication and harbor the virus in a latent state
    corecore