10 research outputs found

    Guidelines for developing optical clocks with 10−1810^{-18} fractional frequency uncertainty

    Get PDF
    There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the 10−1810^{-18} range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project "Optical clocks with 1imes10−181 imes 10^{-18} uncertainty" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Key signaling nodes in mammary gland development and cancer: ÎČ-catenin

    Get PDF
    ÎČ-Catenin plays important roles in mammary development and tumorigenesis through its functions in cell adhesion, signal transduction and regulation of cell-context-specific gene expression. Studies in mice have highlighted the critical role of ÎČ-catenin signaling for stem cell biology at multiple stages of mammary development. Deregulated ÎČ-catenin signaling disturbs stem and progenitor cell dynamics and induces mammary tumors in mice. Recent data showing deregulated ÎČ-catenin signaling in metaplastic and basal-type tumors suggest a similar link to reactivated developmental pathways and human breast cancer. The present review will discuss ÎČ-catenin as a central transducer of numerous signaling pathways and its role in mammary development and breast cancer

    Guidelines for developing optical clocks with 10-18 fractional frequency uncertainty

    Get PDF
    There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of today's leading optical standards is currently in the 10−18 range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project "Optical clocks with 1×10−18 uncertainty" (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects.EU/Horizon2020/EMPIR/E

    Uranium assay and trace element analysis of the fourth collaborative material exercise samples by the modified Davies-Gray method and the ICP-MS/OES techniques

    No full text
    An international group of laboratories participating in CMX-4 subjected three samples to comparative nuclear forensic analysis using uranium assay and trace element analysis techniques to determine if the samples had similar or different origins. Uranium assay indicated that two pellet samples (ES-2 and ES-3) were nearly pure UO 2 while the black powder sample ES-1 was primarily UO 2 with UO 3 and/or U 3 O 8 forms present as impurities. Trace element analysis by five of the six participating laboratories reported molybdenum concentrations below 10\ua0\ub5g/g U in all of the exercise samples, suggesting the same likely facility of origin for all three samples

    The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    No full text
    International audienceNorthwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, similar to QFM) on the liquidus to higher oxygen fugacity (similar to QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystalline and shock-amorphized plagioclase (An(5062)), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. We obtain a Sm-Nd formation age of 2.37 +/- 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock Sm-147/Nd-144 value of 0.37 +/- 0.02 is consistent with it being derived directly from its source and the high initial epsilon(143)(Nd) value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a second igneous unit from the early Amazonian.(C) 2017 Elsevier Ltd. All rights reserved
    corecore