83 research outputs found

    Effect of Cr(V) on reproductive organ morphology and sperm parameters: An experimental study in mice

    Get PDF
    BACKGROUND: Cr(V) species are formed during the intracellular reduction of Cr(VI), a ubiquitous environmental pollutant. In this study, the acute toxicity of a physiologically stable Cr(V) compound, [Cr(V)-BT](2- )(BT = bis(hydroxyethyl)aminotris(hydroxymethyl)methane) was investigated in the male reproductive system of sexually mature 60-day-old male ICR-CD1 mice. METHODS: Eight-week-old animals were subcutaneously injected daily with a dose of ca 8 μmol of Cr/mouse, during 5 days. The control group was injected with 0.5 mL of BT buffer. Testis and epididymis morphology was evaluated using light and transmission electron microscopy. Epididymal sperm counts, motility and acrosome integrity were also assayed using standard methods. RESULTS: Seminiferous epithelium abnormalities were detected in the Cr(V)-BT experimental group, including intraepithelial vacuolation, and remarkable degeneration of Sertoli cells, spermatocytes and spermatids. The premature release of germ cells into the tubular lumen was also evident. Histological evaluation of epididymal compartments revealed apparently normal features. However, the epididymal epithelium presented vacuolation. [Cr(V)-BT](2- )induced a reduction in sperm acrosome integrity. However, sperm motility and density were not significantly affected. CONCLUSION: This in vivo study using a Cr(V) compound, provides evidence for the potential reproductive hazards caused on male reproductive system by species containing chromium in intermediate oxidation states

    Mitochondrial Variability as a Source of Extrinsic Cellular Noise

    Get PDF
    We present a study investigating the role of mitochondrial variability in generating noise in eukaryotic cells. Noise in cellular physiology plays an important role in many fundamental cellular processes, including transcription, translation, stem cell differentiation and response to medication, but the specific random influences that affect these processes have yet to be clearly elucidated. Here we present a mechanism by which variability in mitochondrial volume and functionality, along with cell cycle dynamics, is linked to variability in transcription rate and hence has a profound effect on downstream cellular processes. Our model mechanism is supported by an appreciable volume of recent experimental evidence, and we present the results of several new experiments with which our model is also consistent. We find that noise due to mitochondrial variability can sometimes dominate over other extrinsic noise sources (such as cell cycle asynchronicity) and can significantly affect large-scale observable properties such as cell cycle length and gene expression levels. We also explore two recent regulatory network-based models for stem cell differentiation, and find that extrinsic noise in transcription rate causes appreciable variability in the behaviour of these model systems. These results suggest that mitochondrial and transcriptional variability may be an important mechanism influencing a large variety of cellular processes and properties

    A Novel Multiplex Cell Viability Assay for High-Throughput RNAi Screening

    Get PDF
    Cell-based high-throughput RNAi screening has become a powerful research tool in addressing a variety of biological questions. In RNAi screening, one of the most commonly applied assay system is measuring the fitness of cells that is usually quantified using fluorescence, luminescence and absorption-based readouts. These methods, typically implemented and scaled to large-scale screening format, however often only yield limited information on the cell fitness phenotype due to evaluation of a single and indirect physiological indicator. To address this problem, we have established a cell fitness multiplexing assay which combines a biochemical approach and two fluorescence-based assaying methods. We applied this assay in a large-scale RNAi screening experiment with siRNA pools targeting the human kinome in different modified HEK293 cell lines. Subsequent analysis of ranked fitness phenotypes assessed by the different assaying methods revealed average phenotype intersections of 50.7±2.3%–58.7±14.4% when two indicators were combined and 40–48% when a third indicator was taken into account. From these observations we conclude that combination of multiple fitness measures may decrease false-positive rates and increases confidence for hit selection. Our robust experimental and analytical method improves the classical approach in terms of time, data comprehensiveness and cost

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Trichomonas Transmembrane Cyclases Result from Massive Gene Duplication and Concomitant Development of Pseudogenes

    Get PDF
    Trichomonas vaginalis is the only medically important protist (single-cell eukaryote) that is sexually transmitted. The ∼160-Mb Trichomonas genome contains more predicted protein-encoding genes (∼60,000) than the human genome. To begin to understand why there are so many copies of some genes, we chose here to study a large family of genes encoding unique transmembrane cyclases. Our most important results include the following. More than 100 transmembrane cyclase genes do not result from chromosomal duplications, because for the most part only the coding regions of the genes, rather than flanking sequences, are duplicated. Almost half of the transmembrane cyclase genes are pseudogenes, and these pseudogenes are polymorphic among laboratory strains of Trichomonas. Messenger RNAs for numerous transmembrane cyclases are expressed simultaneously, and representative cyclase domains have adenylyl cyclase activity. In summary, the large family of Trichomonas genes encoding transmembrane adenylyl cyclases results from massive gene duplication and concomitant development of pseudogenes

    Enhancement of antimicrobial activities of whole and sub-fractionated white tea by addition of copper (II) sulphate and vitamin C against 'Staphylococcus aureus'; a mechanistic approach.

    Get PDF
    WT showed no efficacy in the combinations tested. WTF was enhanced with copper (II) sulphate and further with vitamin C. WT and WTF increased acidity of copper (II) sulphate possibly via the formation of chemical complexes. The difference in WT/WTF absorbance possibly represented substances less concentrated or absent in WTF. Investigations to establish which WTF component/s and in what proportions additives are most effective against target organisms are warranted

    Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017

    Get PDF
    Background Understanding the patterns of HIV/AIDS epidemics is crucial to tracking and monitoring the progress of prevention and control efforts in countries. We provide a comprehensive assessment of the levels and trends of HIV/AIDS incidence, prevalence, mortality, and coverage of antiretroviral therapy (ART) for 1980–2017 and forecast these estimates to 2030 for 195 countries and territories. Methods We determined a modelling strategy for each country on the basis of the availability and quality of data. For countries and territories with data from population-based seroprevalence surveys or antenatal care clinics, we estimated prevalence and incidence using an open-source version of the Estimation and Projection Package—a natural history model originally developed by the UNAIDS Reference Group on Estimates, Modelling, and Projections. For countries with cause-specific vital registration data, we corrected data for garbage coding (ie, deaths coded to an intermediate, immediate, or poorly defined cause) and HIV misclassification. We developed a process of cohort incidence bias adjustment to use information on survival and deaths recorded in vital registration to back-calculate HIV incidence. For countries without any representative data on HIV, we produced incidence estimates by pulling information from observed bias in the geographical region. We used a re-coded version of the Spectrum model (a cohort component model that uses rates of disease progression and HIV mortality on and off ART) to produce age-sex-specific incidence, prevalence, and mortality, and treatment coverage results for all countries, and forecast these measures to 2030 using Spectrum with inputs that were extended on the basis of past trends in treatment scale-up and new infections. Findings Global HIV mortality peaked in 2006 with 1·95 million deaths (95% uncertainty interval 1·87–2·04) and has since decreased to 0·95 million deaths (0·91–1·01) in 2017. New cases of HIV globally peaked in 1999 (3·16 million, 2·79–3·67) and since then have gradually decreased to 1·94 million (1·63–2·29) in 2017. These trends, along with ART scale-up, have globally resulted in increased prevalence, with 36·8 million (34·8–39·2) people living with HIV in 2017. Prevalence of HIV was highest in southern sub-Saharan Africa in 2017, and countries in the region had ART coverage ranging from 65·7% in Lesotho to 85·7% in eSwatini. Our forecasts showed that 54 countries will meet the UNAIDS target of 81% ART coverage by 2020 and 12 countries are on track to meet 90% ART coverage by 2030. Forecasted results estimate that few countries will meet the UNAIDS 2020 and 2030 mortality and incidence targets. Interpretation Despite progress in reducing HIV-related mortality over the past decade, slow decreases in incidence, combined with the current context of stagnated funding for related interventions, mean that many countries are not on track to reach the 2020 and 2030 global targets for reduction in incidence and mortality. With a growing population of people living with HIV, it will continue to be a major threat to public health for years to come. The pace of progress needs to be hastened by continuing to expand access to ART and increasing investments in proven HIV prevention initiatives that can be scaled up to have population-level impact

    Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018

    Get PDF
    Background: Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is still among the leading causes of disease burden and mortality in sub-Saharan Africa (SSA), and the world is not on track to meet targets set for ending the epidemic by the Joint United Nations Programme on HIV/AIDS (UNAIDS) and the United Nations Sustainable Development Goals (SDGs). Precise HIV burden information is critical for effective geographic and epidemiological targeting of prevention and treatment interventions. Age- and sex-specific HIV prevalence estimates are widely available at the national level, and region-wide local estimates were recently published for adults overall. We add further dimensionality to previous analyses by estimating HIV prevalence at local scales, stratified into sex-specific 5-year age groups for adults ages 15–59 years across SSA. Methods: We analyzed data from 91 seroprevalence surveys and sentinel surveillance among antenatal care clinic (ANC) attendees using model-based geostatistical methods to produce estimates of HIV prevalence across 43 countries in SSA, from years 2000 to 2018, at a 5 × 5-km resolution and presented among second administrative level (typically districts or counties) units. Results: We found substantial variation in HIV prevalence across localities, ages, and sexes that have been masked in earlier analyses. Within-country variation in prevalence in 2018 was a median 3.5 times greater across ages and sexes, compared to for all adults combined. We note large within-district prevalence differences between age groups: for men, 50% of districts displayed at least a 14-fold difference between age groups with the highest and lowest prevalence, and at least a 9-fold difference for women. Prevalence trends also varied over time; between 2000 and 2018, 70% of all districts saw a reduction in prevalence greater than five percentage points in at least one sex and age group. Meanwhile, over 30% of all districts saw at least a five percentage point prevalence increase in one or more sex and age group. Conclusions: As the HIV epidemic persists and evolves in SSA, geographic and demographic shifts in prevention and treatment efforts are necessary. These estimates offer epidemiologically informative detail to better guide more targeted interventions, vital for combating HIV in SSA. © 2022, The Author(s).Funding text 1: S Afzal acknowledges support of the Pakistan Society of Medical Infectious Diseases and King Edward Medical University to access the relevant data of HIV from various sources. T W Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia (FCT), I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences - UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy - i4HB; FCT/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020. K Deribe acknowledges support by the Wellcome Trust [grant number 201900/Z/16/Z] as part of his International Intermediate Fellowship. C Herteliu and A Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Claudiu Herteliu is partially supported by a grant of the Romanian Ministry of Research Innovation and Digitalization, MCID, project number ID-585-CTR-42-PFE-2021. Y J Kim acknowledges support by the Research Management Centre, Xiamen University Malaysia [No. XMUMRF/2020-C6/ITCM/0004]. S L Koulmane Laxminarayana acknowledges institutional support by the Manipal Academy of Higher Education. K Krishan acknowledges non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India. M Kumar would like to acknowledge NIH/FIC K43 TW010716-04. I Landires is a member of the Sistema Nacional de Investigación (SNI), supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama. V Nuñez-Samudio is a member of the Sistema Nacional de Investigación (SNI), which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT). O O Odukoya was supported by the Fogarty International Center of the National Institutes of Health under the Award Number K43TW010704. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Z Quazi Syed acknowledges support from JNMC, Datta Meghe Institute of Medical Sciences. A I Ribeiro was supported by National Funds through FCT, under the ‘Stimulus of Scientific Employment – Individual Support’ program within the contract CEECIND/02386/2018. A M Samy acknowledges the support from a fellowship of the Egyptian Fulbright Mission program and Ain Shams University. R Shrestha acknowledges support from NIDA K01 Award: K01DA051346. N Taveira acknowledges support from FCT and Aga Khan Development Network (AKDN) - Portugal Collaborative Research Network in Portuguese speaking countries in Africa (project reference: 332821690), and by the European & Developing Countries Clinical Trials Partnership (EDCTP), UE (project reference: RIA2016MC-1615). B Unnikrishnan acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal. ; Funding text 2: LBD sub-Saharan Africa HIV Prevalence Collaborators S Afzal acknowledges support of the Pakistan Society of Medical Infectious Diseases and King Edward Medical University to access the relevant data of HIV from various sources. T W Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia (FCT), I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences - UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy - i4HB; FCT/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020. K Deribe acknowledges support by the Wellcome Trust [grant number 201900/Z/16/Z] as part of his International Intermediate Fellowship. C Herteliu and A Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Claudiu Herteliu is partially supported by a grant of the Romanian Ministry of Research Innovation and Digitalization, MCID, project number ID-585-CTR-42-PFE-2021. Y J Kim acknowledges support by the Research Management Centre, Xiamen University Malaysia [No. XMUMRF/2020-C6/ITCM/0004]. S L Koulmane Laxminarayana acknowledges institutional support by the Manipal Academy of Higher Education. K Krishan acknowledges non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India. M Kumar would like to acknowledge NIH/FIC K43 TW010716-04. I Landires is a member of the Sistema Nacional de Investigación (SNI), supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama. V Nuñez-Samudio is a member of the Sistema Nacional de Investigación (SNI), which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT). O O Odukoya was supported by the Fogarty International Center of the National Institutes of Health under the Award Number K43TW010704. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Z Quazi Syed acknowledges support from JNMC, Datta Meghe Institute of Medical Sciences. A I Ribeiro was supported by National Funds through FCT, under the ‘Stimulus of Scientific Employment – Individual Support’ program within the contract CEECIND/02386/2018. A M Samy acknowledges the support from a fellowship of the Egyptian Fulbright Mission program and Ain Shams University. R Shrestha acknowledges support from NIDA K01 Award: K01DA051346. N Taveira acknowledges support from FCT and Aga Khan Development Network (AKDN) - Portugal Collaborative Research Network in Portuguese speaking countries in Africa (project reference: 332821690), and by the European & Developing Countries Clinical Trials Partnership (EDCTP), UE (project reference: RIA2016MC-1615). B Unnikrishnan acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal.; Funding text 3: This work was primarily supported by grant OPP1132415 from the Bill & Melinda Gates Foundation. The funder of the study had no role in study design, data collection, data analysis, data interpretation, writing of the report, or decision to publish. The corresponding authors had full access to all the data in the study and had final responsibility for the decision to submit for publication. ; Funding text 4: S Afzal reports leadership or fiduciary role in other board, society, committee or advocacy group, unpaid, with the Pakistan society of Community Medicine & Public Health, the Pakistan Association of Medical Editors, and the Pakistan Society of Medical Infectious Diseases, all outside the submitted work. R Ancuceanu reports 5 payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from Avvie, Sandoz, and B Braun, all outside the submitted work. T W Bärnighausen reports research grants from the European Union (Horizon 2020 and EIT Health), German Research Foundation (DFG), US National Institutes of Health, German Ministry of Education and Research, Alexander von Humboldt Foundation, Else-Kröner-Fresenius-Foundation, Wellcome Trust, Bill & Melinda Gates Foundation, KfW, UNAIDS, and WHO; consulting fees from KfW on the OSCAR initiative in Vietnam; participation on a Data Safety Monitoring Board or Advisory Board with the NIH-funded study “Healthy Options” (PIs: Smith Fawzi, Kaaya), Chair, Data Safety and Monitoring Board (DSMB), German National Committee on the “Future of Public Health Research and Education,” Chair of the scientific advisory board to the EDCTP Evaluation, Member of the UNAIDS Evaluation Expert Advisory Committee, National Institutes of Health Study Section Member on Population and Public Health Approaches to HIV/AIDS (PPAH), US National Academies of Sciences, Engineering, and Medicine’s Committee for the “Evaluation of Human Resources for Health in the Republic of Rwanda under the President’s Emergency Plan for AIDS Relief (PEPFAR),” University of Pennsylvania (UPenn) Population Aging Research Center (PARC) External Advisory Board Member; leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid, as co-chair of the Global Health Hub Germany (which was initiated by the German Ministry of Health); all outside the submitted work. J das Neves reports grants or contracts from Ref. 13605 – Programa GÉNESE, Gilead Portugal (PGG/002/2016 – Programa GÉNESE, Gilead Portugal) outside the submitted work. L Dwyer-Lindgren reports support for the present manuscript from the Bill & Melinda Gates Foundation through grant OPP1132415. I Filip reports other financial or non-financial interests from Avicenna Medical and Clinical Research Institute, outside the submitted work. E Haeuser reports support for the present manuscript from the Bill & Melinda Gates Foundation through grant OPP1132415. C Herteliu reports grants from Romanian Ministry of Research Innovation and Digitalization, MCID, for project number ID-585-CTR-42-PFE-2021 (Jan 2022-Jun 2023) “Enhancing institutional performance through development of infrastructure and transdisciplinary research ecosystem within socio-economic domain – PERFECTIS,” from Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, for project number PN-III-P4-ID-PCCF-2016-0084 (Oct 2018-Sep 2022) “Understanding and modelling time-space patterns of psychology-related inequalities and polarization,” and project number PN-III-P2-2.1-SOL-2020-2-0351 (Jun 2020-Oct 2020) “Approaches within public health management in the context of COVID-19 pandemic,” and from the Ministry of Labour and Social Justice, Romania for project number “Agenda for skills Romania 2020-2025”; all outside the submitted work. J J Jozwiak reports payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from Teva, Amgen, Synexus, Boehringer Ingelheim, Zentiva, and Sanofi as personal fees, all outside the submitted work. J Khubchandani reports other financial interests from Teva Pharmaceuticals, all outside the submitted work. K Krishnan reports other non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India, outside the submitted work. H J Larson reports grants or contracts from the MacArthur Foundation and Merck to London School of Hygeine and Tropical Medicine, and from the Vaccine Confidence Fund to the University of Washington; payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from Center for Strategic and International Studies as payment to LSHTM for co-chairing HighLevel Panel and from GSK as personal payment for developing training sessions and lectures; leadership or fiduciary role in other board, society, committee or advocacy group, pair, with the ApiJect Advisory Board; all outside the submitted work. O O Odukoya reports support for the present manuscript from the Fogarty International Center of the National Institutes of Health under the Award Number K43TW010704. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. A Pans reports grants from Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, for project number PN-III-P4-ID-PCCF-2016-0084 (Oct 2018-Sep 2022) “Understanding and modelling time-space patterns of psychology-related inequalities and polarization,” and project number PN-III-P2-2.1-SOL-2020-2-0351 (Jun 2020-Oct 2020) “Approaches within public health management in the context of COVID-19 pandemic,” outside the submitted work. S R Pandi-Perumal reports royalties from Springer for editing services; stock or stock options in Somnogen Canada Inc as the President and Chief Executive Officer; all outside the submitted work. A Radfar reports other financial or non-financial interests from Avicenna Medical and Clinical Research Institute, outside the submitted work. A I Ribeiro reports grants or contracts from National Funds through FCT, under the ‘Stimulus of Scientific Employment – Individual Support’ program within the contract CEECIND/02386/2018, outside the submitted work. J M Ross reports support for the present manuscript from the Bill & Melinda Gates Foundation through grant OPP1132415; grants or contracts from National Institutes of Health and Firland Foundation as payments to their institution; consulting fees from United States Agency for International Development as personal payments, and from KNCV Tuberculosis Foundation as payments to their institution; all outside the submitted work. E Rubagotti reports payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from the Greenwich China Office and Unviersity Prince Mohammad VI, Morocco, all outside the submitted work. B Sartorius reports grants or contracts from DHSC – GRAM Project; Leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid, as a member of the GBD Scientific Council and a Member of WHO RGHS; all outside the submitted work. J A Singh reports consulting fees from Crealta/Horizon, Medisys, Fidia, PK Med, Two labs Inc, Adept Field Solutions, Clinical Care options, Clearview healthcare partners, Putnam associates, Focus forward, Navigant consulting, Spherix, MedIQ, Jupiter Life Science LLC, UBM LLC, Trio Health, Medscape, WebMD, and Practice Point communications, and the National Institutes of Health and the American College of Rheumatology; payment or honoraria for participating in the speakers bureau for Simply Speaking; support for attending meetings and/or travel from the steering committee of OMERACT, to attend their meeting every 2 years; participation on a Data Safety Monitoring Board or Advisory Board as an unpaid member of the FDA Arthritis Advisory Committee; leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid, as a member of the steering committee of OMERACT, an international organization that develops measures for clinical trials and receives arm’s length funding from 12 pharmaceutical companies, with the Veterans Affairs Rheumatology Field Advisory Committee as Chair, and with the UAB Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis as a director and editor; stock or stock options in TPT Global Tech, Vaxart pharmaceuticals, Atyu Biopharma, Adaptimmune Therapeutics, GeoVax Labs, Pieris Pharmaceuticals, Enzolytics Inc, Series Therapeutics, Tonix Pharmaceuticals, and Charlotte’s Web Holdings Inc. and previously owned stock options in Amarin, Viking, and Moderna pharmaceuticals; all outside the submitted work. N Taveira reports grants or contracts from FCT and Aga Khan Development Network (AKDN) – Portugal Collaborative Research Network in Portuguese speaking countries in Africa (Project reference: 332821690) and from European & Developing Countries Clinical Trials Partnership (EDCTP), UE (Project reference: RIA2016MC-1615), as payments made to their institution, all outside the submitted work
    corecore