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Abstract

We present a study investigating the role of mitochondrial variability in generating noise in eukaryotic cells. Noise in cellular
physiology plays an important role in many fundamental cellular processes, including transcription, translation, stem cell
differentiation and response to medication, but the specific random influences that affect these processes have yet to be
clearly elucidated. Here we present a mechanism by which variability in mitochondrial volume and functionality, along with
cell cycle dynamics, is linked to variability in transcription rate and hence has a profound effect on downstream cellular
processes. Our model mechanism is supported by an appreciable volume of recent experimental evidence, and we present
the results of several new experiments with which our model is also consistent. We find that noise due to mitochondrial
variability can sometimes dominate over other extrinsic noise sources (such as cell cycle asynchronicity) and can
significantly affect large-scale observable properties such as cell cycle length and gene expression levels. We also explore
two recent regulatory network-based models for stem cell differentiation, and find that extrinsic noise in transcription rate
causes appreciable variability in the behaviour of these model systems. These results suggest that mitochondrial and
transcriptional variability may be an important mechanism influencing a large variety of cellular processes and properties.
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Introduction

Stochastic influences significantly affect a multitude of processes in

cellular biology [1–5]. Understanding the sources of this randomness

within and between cells is a central current challenge in quantitative

biology. Noise has been found to affect processes including stem cell

fate decisions [6], bet-hedging in bacterial phenotypes [7,8], cancer

development [9], and responses to apoptosis-inducing factors

[10,11]. In this paper, we consider how mitochondria may constitute

a significant source of this cellular noise.

Noise in cellular processes may result from sources intrinsic to the

gene in question (those responsible for differences in the expression

levels of genes under identical regulation in the same cell) or

extrinsic sources (those responsible for cell-to-cell variation in genes

under identical regulation in a population). Both intrinsic and

extrinsic noise sources contribute to the overall noise observed in,

for example, transcription rates and protein expression levels [12].

The interplay between intrinsic and extrinsic noise can be

characterised with elegant experimental techniques such as dual

reporter measurements [3], in which the expression levels of two

proteins are measured within cells and within a population, but

subtleties exist in disambiguating intrinsic and extrinsic contribu-

tions to noise levels [13]. Some studies have found the contribution

of extrinsic factors to overall noise levels to be stronger in eukaryotes

[14,15] than prokaryotes [3], although others debate this interpre-

tation [16]. To investigate these influences, several mathematical

models for the emergence of intrinsic and extrinsic cellular noise

have been introduced and explored [12,17–24]. In addition, recent

studies have investigated, both experimentally and theoretically, the

architecture of extrinsic noise and its causal factors [14–16,19,25–

27], though substantial uncertainty surrounds the importance of

individual contributions (such as variability in cell cycle stage and

cellular volume) to extrinsic noise [28].

Huh and Paulsson recently argued that uneven segregration of

cellular constituents at mitosis can contribute significantly to cell-

to-cell differences in levels of cellular components and proteins in a

population, focusing on stochasticity in protein inheritance

between sister cells [29,30]. We focus on a specific instance of

this phenomenon: cell-to-cell variability in the mitochondrial

content of cells. An experimental study performed by das Neves

et al. identified uneven partitioning of mitochondria at mitosis as

being a possibly significant source of extrinsic noise in eukaryotes

[31], supporting recent theoretical ideas [30]. Mitochondria have

been found to display remarkably complex behaviour interwoven

with cellular processes [32–34] and to display significant

heterogeneity within cells [31,35–37]. Mitochondrial influences
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on processes including stem cell differentation [38] and cell cycle

progression [39–41] have recently been observed.

das Neves et al. [31] observe a wide spread of mitochondrial

masses in a population of cells, illustrating extrinsic variability in

organelle distribution. Mitochondrial functionality has also been

observed to vary between cells [34,35,42–44]. das Neves et al. also

observed a link between mitochondrial mass and membrane

potential and cellular ATP levels, and found transcription rate to

be a function of ATP concentration. In addition, the modulation

of mitochondrial functionality, through anti- and pro-oxidant

treatments, was found to alter cell-to-cell variability in transcrip-

tion rates, with anti-oxidants significantly reducing variability and

pro-oxidants increasing variability. These results suggest that cell-

to-cell heterogeneity in mitochondrial mass and functionality may

propagate into extrinsic noise in transcription rate, and thence-

forth processes further downstream, but the quantitative links

behind these processes remain unclear. We introduce a simple

approach, consistent with a range of experimental observations,

that quantitatively connects all these features and predicts the

downstream physiological influence of mitochondrial variability.

Shahrezaei et al. [45] have recently shown that extrinsic noise can

influence levels of intrinsic noise, as cell-to-cell variability in the rates

of processes such as transcription and translation affect the intrinsic

dynamics of gene expression. In addition, they provided an

extension to standard stochastic simulation techniques to allow this

variability in the production rates of chemical species to be

accurately simulated – a problem that has been approached

using different techniques in previous studies [46,47]. However,

this theoretical study did not attempt to characterise the physio-

logical causes of this extrinsic noise – an important consideration in

assessing the ubiquity and consequences of cellular noise. Our

proposal that cell-to-cell mitochondrial variability provides a

significant source of extrinsic noise in transcription addresses these

causes, and we show that extrinsic noise resulting from mitochon-

drial variability could significantly influence intrinsic noise in gene

expression.

This paper will proceed as follows. We first introduce one of the

simplest possible mathematical models for variation in mitochon-

drial mass and functionality during and between cell cycles, and

show that it is consistent with a wide range of experimental data,

both from the literature and newly reported here, and allows

analytical treatment. Our model includes stochastic segregation of

mitochondria at mitosis and functional differences in mitochondria

between cells, and contains a simple dynamic description of the time

evolution of cellular volume and mitochondrial mass through the

cell cycle. To our knowledge it is the first model of its kind which

links mitochondrial mass and function to the cell cycle and gene

expression. We relate mitochondrial properties to the production of

ATP in the cell, which in turn affects transcription rates: hence,

variability in mitochondrial properties causes downstream variabil-

ity in transcription. Next, we incorporate the behaviour produced

by our model into a common framework for cellular noise, and

show that extrinsic noise due to variation in ½ATP� can have a

profound effect on gene expression levels, dominating over intrinsic

noise. We then demonstrate the cell physiological implications of

energy variability by showing how mitochondrial variability may

affect stem cell differentation. Finally, we discuss how our model

relates to recent work characterising sources of extrinsic noise, and

suggest experiments to allow more refined models.

Results

In this section, we first describe the approach we use to model

mitochondrial variability in a population of cells. Next, we compare

recent experimental data from Ref. [31] (demonstrating transcrip-

tion rate variability in a range of cell types and exploring cellular

variability in detail in HeLa cells) to the predictions of our model

and demonstrate that a good agreement exists across a wide range of

experiments. We then report new experimental results of relevance

to the study of mitochondrial variability and show that these too

largely agree with the predictions from our simple model. This set of

successful comparisons suggests that our model is capable of

producing quantitatively sound estimates of the levels of noise

associated with mitochondrial sources of variability. Motivated by

these results, we next show how our model allows a quantitative link

to be formed between mitochondrial variability and variability in

transcription rate in cells. We explore this link by investigating the

predictions that our model makes concerning noise in models of

gene expression levels, and in models of stem cell differentiation

pathways. We find that the mitochondrial sources of variability from

our model could provide a substantial contribution to noise levels in

mRNA and protein levels within the cell, and can influence stem cell

differentiation in a manner that depends upon the symmetry of the

regulatory interactions that drive differentiation.

Model
While the heterogeneity of mitochondria has been observed

experimentally and connected to variability in processes like

transcription [31] and stem cell differentiation [38], the mecha-

nisms by which mitochondrial variability influences other cellular

processes has not been elucidated clearly. Here, we describe a

simple model which formalises these links, and note that it is

consistent with recent experimental results concerning mitochon-

drial heterogeneity (and variability in connected cellular features)

[31]. The simplicity of our model means that analytic expressions

can be derived for many quantities of interest, facilitating a more

complete and intuitive understanding of the modelled biological

connections. We will then use this model to investigate more

specific questions regarding the links between mitochondrial

variability and transcription rate and stem cell differentiation.

The central concept behind our model is illustrated in Fig. 1.

Individual cells are characterised by three key variables: the

volume of the cell (v); the amount of mitochondrial mass in the cell

(n); and the degree of mitochondrial functionality (f ). This last

quantity, f , represents a coarse-grained measure of the efficiency

of mitochondria within a cell – a factor which may be affected, for

example, by the levels of reactive oxygen species (ROS),

mitochondrial membrane potential, variability in mitochondrial

protein complex abundance, and genetic differences between

Author Summary

Cellular variability has been found to play a major role in
diverse and important phenomena, including stem cell
differentiation and drug resistance, but the sources of this
variability have yet to be satisfactorily explained. We
propose a mechanism, supported by a substantial number
of recent and new experiments, by which cell-to-cell
differences in both the number and functionality of
mitochondria – the organelles responsible for energy
production in eukaryotes – leads to variability in transcrip-
tion rate between cells and may hence be a significant
source of cellular noise in many downstream processes. We
illustrate the downstream effect of mitochondrial variability
through simulated studies of protein expression and stem
cell differentiation, and suggest possible experimental
approaches to further elucidate this mechanism.

Mitochondria Cause Significant Cellular Noise
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mitochondria [48]. ATP concentration in the cell is modelled

as a function of these three quantities, and transcription rate is

modelled as a function of ATP concentration [31]. Variability in

cell volume, mitochondrial mass and mitochondrial functionality

arises due to stochastic inheritance of these quantities at cell

divisions. This variability causes cell-to-cell differences in ATP

levels, and hence transcription rate, in a population of cells.

Stochastic partitioning at mitosis. In our model, cells

grow deterministically (see Cellular Dynamics), undergoing mitosis

when their volume reaches a cutoff v�. When this occurs, the cell

divides in two, with mitochondrial mass n split stochastically

between daughter cells, with each unit of mass being assigned to

each cell with equal probability, and cell volume also segregated

randomly (see Methods). In our model, the partitioning of n and v

at mitosis is uncorrelated. We use this lack of correlation both for

simplicity and due to experimental data (see Results) illustrating

that cell cycle length correlates well with inherited mitochondrial

mass and poorly with inherited cell volume, indirectly suggesting a

lack of correlation between n and v. This model was chosen as the

most straightforward representation of stochastic division of

discrete elements, and is likely to represent a realistic scenario if

there is no explicit biological control mechanism that modulates

the distribution of inherited mitochondria.

Our mitochondrial mass measure (n) physically represents total

mitochondrial volume. However, it will be of use when considering

the segregation of mitochondria at mitosis to consider the cell as

populated by a number of discrete ‘virtual’ mitochondria. We

denote these entities as ‘virtual’ mitochondria due to the difficulty of

regarding mitochondria as individuals given the processes of fission

and fusion [49]. The system as chosen is scaled so as to regard n as

mitochondrial copy number, so that, if n is measured in mm3, each

‘virtual’ mitochondrion possesses a default volume of 1mm3 (see

Methods). These virtual mitochondria are the discrete elements

that, in our model, are binomially partitioned at mitosis –

resembling elements of a fragmented mitochondrial network that

are split between daughter cells [50]. We use the binomial picture

both for simplicity and due to its agreement with recent data on

mitochondrial partitioning [31], but note that a range of

mitochondrial partitioning regimes have been observed in the

literature [29,51,52], and explore (in the Results section) the effects

of wider or narrower distributions associated with mitochondrial

partitioning.

We consider the variable f to be the degree of functionality of a

cell’s mitochondria. The inclusion of such a term is necessitated by

several experimental observations. das Neves et al. show that a

measure of mitochondrial functionality (membrane potential) is

slowly-varying with time in a given cell, although there is a wide

distribution of functionality within a population [31]. It was also

found that sister cells have similar transcriptional noise levels

compared to the bulk population: if stochasticity were to arise from

mitochondrial mass partitioning alone, we would expect sister cells,

post-mitosis, to exhibit the greatest possible variation, as subsequent

cell growth may be expected to dampen such variability [30].

Another experimental observation is that populations of cells treated

with antioxidants, which improve mitochondrial functionality,

showed a significant drop in noise levels. These results suggest that

an extra source of noise, functional variability between cells, may be

responsible for increasing noise levels.

In the absence of a more refined view of functionality, we

assume that all changes in functionality occur at division and that

f stays constant through the cell cycle. f changes in a stochastic

but mean-reverting fashion at division, and both daughters receive

the same f value (see Methods for more detail). In this simple

model, the variation that a cell experiences due to slow changes in

mitochondrial functionality through the cell cycle is absorbed into

stochastic changes at cell division. We choose this modelling

protocol due to the absence of detailed data on the behaviour of

mitochondrial functionality on timescales longer than a cell cycle,

and suggest that parameterising this simple system to match the

experimentally observed distribution of mitochondrial functional-

ity will give a reasonable estimate of the population variability in

this quantity. In ‘Other Models’ in Text S1, we discuss another

picture in which we allow f to vary continuously through the cell

cycle, and show that similar results emerge when this alternative

model is used.

Figure 1. An illustration of the model we employ for
mitochondrial variability. This illustration qualitatively shows the
key components of our model. Cell growth progresses deterministically
according to the variables that characterise a cell: volume, mitochon-
drial mass (illustrated here by copy number) and functionality
(illustrated here by shading). At mitosis, stochastic partitioning occurs
and daughter cells inherit a random volume, mitochondrial mass and
functionality level from a parent cell. This stochastic inheritance leads to
a heterogeneous population. Cells with high mitochondrial density and
functionality have higher ATP levels, are able to grow faster, and have
higher transcription rates than cells with lower mitochondrial mass and
functionality. The variances associated with stochastic partitioning, the
dependence of ATP concentration on cellular properties, and the
dependence of growth and transcription rates on ATP are all
parameters of the model.
doi:10.1371/journal.pcbi.1002416.g001

Mitochondria Cause Significant Cellular Noise
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In this study, we will consider the oxidative state of a cell as a

key mediator of its functionality f . Recent experimental data has

shown that treating cells with pro- or anti-oxidants strongly affects

the statistics of transcription rate variability in a population [31].

Within our model, the effects of such chemical treatments on the

oxidative state of cells can straightforwardly be captured by

varying the parameters associated with functional inheritance (see

Methods).

½ATP� and transcription rate. We are interested in the

time evolution of ½ATP� as a potential stochastic influence on

downstream processes. Ref. [31] found ATP levels in the cell to be

proportional to mitochondrial mass (n) and membrane potential (a

factor that may be absorbed into our measure of ‘mitochondrial

function’ f ), motivating our choice of expression for ATP

concentration:

½ATP�~ cnf

v
: ð1Þ

In this expression, c is a constant of proportionality linking the

quantities within our model to a biological ATP concentration,

and the meaning of the variable f now becomes apparent as a

scalar multiple relating mitochondrial density to ½ATP�. We note

that other choices for the form of ½ATP�, including ODEs, are

possible, and explore some alternatives in ‘Other Models’ (Text

S1). das Neves et al. also show a link between the total transcription

rate l in a cell (measured through bromo-uridine incorporation

across the whole nucleus) and ½ATP�, a sigmoidal curve, which we

approximate (see ‘Parameterisation of l’ in Text S1) with

l~s1zs2 tan{1 s3½ATP�zs4ð Þ: ð2Þ

das Neves et al. record a change in the structure of this sigmoid

curve in experiments where cellular chromatin is artifically

decondensed. In these situations, the sigmoidal response of l to

½ATP� becomes a hyperbolic curve, with a sharp, continuous

increase of l with ½ATP� at low ½ATP�. This change may reflect the

necessity of remodelling chromatin – a process that requires ATP –

for the transcription process. Chromatin remodelling has been noted

by several studies [15,16,22] to play an important role in mRNA

synthesis noise and hence downstream noise in gene expression.

Rather than attempting to model this influence explicitly, we use the

experimentally-determined form for l(½ATP�) to capture the overall

dependence of transcription rate (including chromatin effects) on

½ATP�.
To summarise, in our model, transcription rate depends

sigmoidally on ATP concentration – a relationship elucidated

and quantified in recent experiments [31]. ATP concentration in

turn depends linearly on the mitochondrial mass and functionality

level of a cell and also on the cell volume. Cells with many, highly

functional mitochondria will have higher levels of ATP and hence

higher transcription rates than those with smaller, less functional

mitochondrial populations.

Cellular dynamics. Our model for cell cycle dynamics consists

of equations governing the time evolution of the key quantities

volume, mitochondrial mass, and mitochondrial functionality. In the

light of a recent study [53], and as cell cycle models often assume the

exponential growth picture, we expect an exponential form for cell

volume growth: _vv!vF (v,n,f ). Here, F (v,n,f ) is a function

expressing the dependence of volume growth rate on other

parameters.

We suggest that ATP concentration (½ATP�) plays a key role in

powering growth of the cell, so cells with higher ATP levels have

higher growth rates associated with cell volume and mitochondrial

mass. This link postulates that biosynthesis rates are generally, like

transcription, a function of ATP concentration. We note that

although ATP concentration has been suggested [31] as a possible

mechanism linking mitochondria and transcription rate, and some

evidence supports this link, it may be the case that a different

factor provides the causal mechanism, and ATP concentration is

correlated with this underlying factor. For example, ROS, which

adversely affect many cellular processes (including provoking a

decrease in transcription rates [31]), may be an alternative to ATP,

or a combination of ATP and ROS levels may act to determine

transcription rate.

Numerous historical studies, both in HeLa cells [54] and other

tissue types [55–60] have found that the density r of mitochondrial

mass (also called mitochondrial volume density) within cells of a

given tissue type is consistent between generations and within

populations. This consistency suggests that the time evolution of

mitochondrial mass should be (a) coupled with the time evolution of

volume and (b) of a form that allows damping of the inherent

stochasticity at mitosis. In addition to these features, it is presumably

reasonable to assume that mitochondrial growth is dependent on

available ½ATP� (due to the required protein synthesis). We suggest a

model that captures these required dependencies and incorporates

mean-reversion, given by the dynamic equations:

_vv~af rv ð3Þ

_nn~bf rv, ð4Þ

where r~n=v.

We note that this simple model does not distinguish between

volume growth rates at different times in the cell cycle, but yields a

smooth exponential growth in cell size throughout the cell cycle.

We work in this picture for simplicity and generality, but note that

a more sophisticated model would include a more detailed

description of cell growth as another potential source of variability

between cells.

The model’s dynamics result (see Methods) in a convergence in

mitochondrial density with time to a value b=a.

Model parameterisation. Values for the parameters in our

model were chosen (see Methods) to match a subset of experimental

data, illustrated in Fig. 2.

Our simple model is sufficient to approximate a large set
of experimental data

Here we list a set of comparisons between predictions from our

model and experimental studies. Unless stated otherwise, we will

use experimental data from the study of das Neves et al. [31], using

the protocol ‘NX’ to refer to data in Fig. X of that study.

Distributions of mitochondrial mass and cell volume. Our

model gives a peaked distribution skewed towards low n values for

mitochondrial mass in the bulk population (Fig. 3A), which is similar

in form to the experimental distribution (N4b). The distribution of

cellular volumes in a bulk population (Fig. 3B) is found to display the

quadratic decay expected from a theoretical treatment of cells

growing exponentially [19].

Weak correlation between the lengths of successive cell

cycles in a population. Fig. 3C shows the weak relationship

between the cell cycle length of a parent and a daughter cell,

which qualitatively matches experimental findings (from N4h).

Mitochondria Cause Significant Cellular Noise
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Mitochondrial mass at birth is a better predictor of cell

cycle length than cell volume at birth. Figs. 3D and 3E

illustrate the correlations between cell cycle length and a cell’s birth

values of n and v respectively. The correlation between birth

mitochondrial mass and cell cycle length was strong (R2~0:69,

compared to the experimental value of 0.78) compared to the

correlation between birth cell volume and cell cycle length

(R2~0:22, experimental value 0.22). The same correlation

behaviour is observed in experiments (from N4e and N4f) which

are shown for comparison.

Transcription rate noise with cell cycle stage. We

modelled progression through the cell cycle stages by assigning

stages according to the volume v of a cell. We assign cells with

0:5v�ƒvv0:7v� to G1, 0:7v�ƒvv0:95v� to S, and 0:95v�ƒvvv�

to G2 stages, to approximate the proportion of total cell cycle length

that HeLa cells are observed to spend in each stage [61].

Transcription rate noise was found to stay relatively constant

(around 0.4) when population subsets at different positions in the cell

cycle were measured (see Fig. 3F), as observed in experiments (NS1).

Correlation between mitochondrial mass and cell

volume. Our model predicts a strong correlation between cell

volume v and mitochondrial mass n (Fig. 3G). This result contrasts

with the weak correlation observed, using forward scatter in flow

cytometry to measure volume, by das Neves et al. (N3a) (we

confirmed these experimental results in this study – data not

shown). However, many historic studies have found a much

stronger connection between mitochondrial mass and cellular

volume. The mitochondrial density r~n=v, also referred to as

mitochondrial volume density, has been found to exhibit low

standard deviation (between 0.01 and 0.15 of the mean) in many

different mammalian tissue types [54–60] and amounts of mtDNA

have been found to display similarly low variability [55,62]. These

results contrast with the extremely high variability in

mitochondrial volume density observed by das Neves et al. (the

noise level estimated from the data is around 0.32), but we note

that flow cytometry data (while useful for providing approximate

orderings of cells by volume) may not be capable of providing the

absolute volume measurements which are required to refute the

low variability in r observed in many other studies.

Distribution of transcription rate per unit volume. Fig. 3H

shows the distribution of transcription rate per unit nuclear volume

(in our model, nuclear volume is taken as proportion to cell volume) in

the bulk population. This result follows a similar peaked distribution

to that found experimentally (N1a).

Others. We also note some qualitative features of our model: an

increase in transcription rate with ATP levels is observed (trivially due

to the functional form of l), which is also observed experimentally

(N3g). We also observe an increase in transcription rate per unit

volume with total mitochondrial functionality (nf in our model),

found experimentally (N3d). Fig. 4 shows illustrative time series of the

dynamic variables involved in simulation of our model.

New experimental results are also consistent with this
model

In Fig. 3, we also present new experimental results pertaining to

our model. These new experiments were designed to characterise

two additional features of cells in a population: a measure of the

total level of mitochondrial function within cells and the modulation

of cell cycle lengths by changing the oxidative state of the cell. The

total level of mitochondrial function is experimentally measured

using the intensity of signal from CMXRos, a dye that stains

mitochondria and accumulates according to membrane-potential,

integrated over a whole cell (see Methods). This signal reports on the

integrated membrane potential across the entire cell, combining

measures of mitochondrial mass and functionality. The population

distribution of this quantity is of interest in exploring the link

between mitochondrial mass and functionality between cells.

The modulation of cell cycle length with cellular oxidative state

was investigated by observing the distribution of cell cycle lengths

in a control population of cells and in populations of cells after

anti-oxidant (dithiothretiol) or pro-oxidant (diamide) treatments

(see Methods). Our model incorporates oxidative status by

modulating the mean level of mitochondrial functionality, so

mitochondria function more readily in an environment with low

oxidative stress than one with high oxidative stress. As mitochon-

drial functionality is tied in our model, through growth rate, to cell

cycle length, we would expect cell cycle lengths to decrease upon

anti-oxidant treatment and increase upon pro-oxidant treatment.

Distribution of mitochondrial functionality. Fig. 3I shows

the distribution of total mitochondrial functionality in a population

of cells. In our model, this distribution is just the distribution of the

quantity nf , and in experiments, we measure the total membrane

potential within a cell (see Methods). The predicted and

experimentally observed distributions share a skewed form with

similar variances.

Cell cycle lengths in different oxidative conditions. In

Fig. 3J we show the mean and standard deviation of cell cycle

lengths in a control population, and upon treatment with anti- and

pro-oxidants (see Methods). In our simulations, these treatments

are modelled by changing the value of fc, affecting the mean

functionality of mitochondria (see Table 1). It is observed that

treatment with anti-oxidants reduces cell cycle lengths, and

treatment with pro-oxidants increases cell cycle lengths. In our

model, this behaviour emerges from the dependence of the rate of

volume growth on ½ATP�, and the increased ½ATP� levels resulting

from mitochondria with higher functionality.

Mitochondrial mass and membrane potential. We also

observed a linear correlation between total mitochondrial mass

(measured with MitoGreen) and total mitochondrial membrane

potential (measured with CMXRos) in experiments performed

Figure 2. The set of data used to parameterise our model.
Experimental data shown in blue, fitted simulated data shown in red. A.
Ratio of larger cell volume to smaller cell volume between sisters at
birth. B. Ratio of larger mitochondrial mass to smaller mitochondrial
mass between sisters at birth. C. Mean and standard deviation of the
cell cycle length in a population of cells. D. Noise levels in transcription
rate in (C)ontrol, (A)ntioxidant-treated and (P)ro-oxidant-treated popu-
lations, and between (S)ister cells. Two other experimental values, not
pictured, that were used to parameterise our model are a maximum cell
volume of 2500mm3 (for consistency with Ref. [53]) and a mean ATP
concentration of 900mM (from Ref. [70]).
doi:10.1371/journal.pcbi.1002416.g002

Mitochondria Cause Significant Cellular Noise
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with both dyes (see Methods and ‘Mitochondrial Membrane

Potential’ in Text S1). This linear correlation emerges from our

model due to our representation of total mitochondrial functionality

as the product of a functional measure f with mitochondrial mass n.

The observed correlation provides qualitative support for this

representation.

Summary of comparisons between experimental results
and model predictions

It can be seen that several key experimental results require the

inclusion of terms relating to mitochondrial variability for an

explanation. In a situation without considerable mitochondrial

influence on cellular variability, it may be expected that variability

in cell cycle position among a population of unsynchronised cells may

be a dominant source of noise. Physical distributions subject to such

cell cycle noise would be expected to show a variance corresponding

to an approximately twofold range, as this is the maximum difference

in size between two unsynchronised cells. However, several results

display data that varies over a considerably wider range than a factor

of two, indicating that a factor other than cell cycle variability may be

responsible. Most straightforwardly, Figs. 3A and 3I demonstrate

pronounced cell-to-cell variability in the mass and functionality of

mitochondrial populations. The distribution of transcription rate in

Fig. 3I similarly shows a wide range of values.

Figs. 3D and 3E demonstrate the observed fact that mitochon-

drial inheritance at birth is a better predictor of cell cycle length

than volume inheritance: an effect that relies on the presence of

mitochondrial variability and mitochondrial influence on cellular

growth. The variability in cell cycle length observed by modulating

the oxidative state of the cell in Fig. 3J suggests that a source of

variability that is sensitive to oxidative effects strongly affects cell

cycle lengths. We believe that these results support the hypothesis

that mitochondrial variability provides a significant contribution to

the variability in distributions of the cellular properties we consider.

The correspondence between experimental data and the

simulated behaviour of our model suggests that, although we

have chosen simple functional forms in our model, the resulting

Figure 3. Our simple model is consistent with experimental probes of mitochondrial and cellular variability. Comparison between our
model (red) and experimental data (blue), following discussion in the Main Text. Experimental data from das Neves et al. [31]. A. Distribution of
mitochondrial mass n in an unsynchronised population of cells. B. Distribution of cell volume v in an unsynchronised population of cells. C.
Comparison of the lengths of cell cycles between generations: Gen 1 is the parent cell, Gen 2 the daughter. Cell cycle lengths are only weakly
correlated. D. Relationship between the ratio of mitochondrial masses at birth against ratio of cell cycle lengths for sister pairs. E. Relationship
between the ratio of cellular volumes at birth and the ratio of cell cycle lengths for sister pairs, showing a weaker correlation than D. F. Transcription
rate noise gl in subsets of the population in G1 , S, and G2 phases (see Main Text). G. Mitochondrial mass n and cell volume v are strongly correlated in
our model. Some experimental evidence is contradictory (see Main Text). H. Distribution of transcription rate per unit volume l=v. New
experimental data (see Methods). I. Distribution of total mitochondrial functionality (nf in our model, CMXRos readings from experiments). J.
Mean and standard deviation of cell cycle lengths in (A)nti-oxidant-treated, (C)ontrol, and (P)ro-oxidant-treated populations. Experimental
histograms, originally presented in arbitrary units, have been scaled to match the mean value of the simulated data.
doi:10.1371/journal.pcbi.1002416.g003
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behaviour is biologically relevant. However, we note here that our

model was constructed from a phenomenological philosophy, with

the intention of using experimental results to construct a plausible

coarse-grained explanation for the influence of mitochondrial

variability on extrinsic noise in general and transcription rate in

particular: we were aware of all data from Ref. [31] when we were

choosing the structure of our model though we only used a subset

of available data to parameterise it. Our goal was to introduce a

simplified but consistent mathematical summary of the data and to

use this to motivate further experiments. To this end, we suggest a

set of experiments in ‘Potential Experiments for Refinement’ (Text

S1) that would support or contribute to further development of this

model. We also note that many potential refinements could be

made to our model and suggest several other functional forms in

‘Other Models’ (Text S1).

Noise in transcription rate depends on noise in
mitochondrial segregation and functionality

We are now in a position to explore the dependence of the level

of noise in transcription rate on the stochasticity in mitochondrial

mass and function, and subsequent stochasticity in ½ATP�. To

investigate the contribution of mitochondrial variability to

transcription rate noise, we performed simulations of our model

while varying s2
f , the variance associated with the inheritance of

mitochondrial functionality, and s2
n, the variance associated with

inheritance of mitochondrial mass. s2
n here gives the variance of

the distribution by which mitochondrial mass is partitioned, and

varying it under the assumption of binomial partitioning

corresponds to changing the mitochondrial makeup of the cell:

lower s2
n corresponds to more mitochondrial elements, each with

smaller volume, while higher s2
n corresponds to fewer, larger

mitochondrial elements, which are partitioned binomially at

mitosis (see Methods).

In Fig. 5, the functional dependence of gl on mitochondrial

variability (s2
n and s2

f ) is shown from simulations. These results

show that, for our model, the transcription rate noise is made up of

significant contributions from both mitochondrial segregation and

functionality. We also performed simulations where sv, the

variability arising from uneven volume partitioning, was set to

zero, and where cells were sampled at the same position in their

cell cycle, removing different ages as a source of variability. As

Fig. 5 shows, the removal of these sources of variability has little

impact on the overall transcription rate noise level. These results

lead us to suggest that mitochondrial sources of variability provide

a strong contribution to cell-to-cell variability in transcription rate.

This argument is supported by an approximate analytic treatment

of the sources of error in transcription rate within our model (see

‘Estimating Noise Contributions’ in Text S1).

Mitochondrial variability can dominate noise in mRNA
and protein expression

Having constructed and parameterised a model for mitochon-

drial variability and its effect on transcription in the cell, we now

investigate the connection between these factors and downstream

Figure 4. Illustration of the dynamics of our model. Example
time series of l (transcription rate), f (mitochondrial functionality), n
(mitochondrial mass) and v (cell volume), as a cell grows and divides
repeatedly in our model.
doi:10.1371/journal.pcbi.1002416.g004

Table 1. Parameters and values employed in our model.

Parameter Description Value Motivation

fa f memory term 0.5 Fit parameter – chosen to give a mean functionality of 1

f 0
c

Sets mean functionality (control) 0.5 Fit parameter – chosen to give a mean functionality of 1

v� Volume for mitosis (scale) 2500mm3 Fixed for consistency with maximum volume in Ref. [53]

c
Proportionality between

nf

v
and ½ATP� 39000mMmm3 Fixed for consistency with mean ATP levels in Ref. [70]

sv v standard deviation at mitosis 90mm3 Fixed by volume segregation data in Ref. [31]

f (1,{1)
c

Set mean functionality (with anti-oxidant and pro-oxidant
respectively)

(0.69, 0.09) Fixed by transcription rate noise levels in Ref. [31]

s1,2,3,4 Fitting parameters for relationship between ½ATP� and l 51.2, 44.7, 0:00288mM{1 , {1:9 Fixed by functional form of l in Ref. [31]

a v growth rate 0:92hr{1 Chosen through optimisation – constrained by mean cell
cycle length in Ref. [31].

b n growth rate 0:022hr{1 Fixed ratio with a through mitochondrial segregation
data in Ref. [31]

sf f standard deviation at mitosis 0.34 Chosen through optimisation – constrained through
transcription rate noise and cell cycle length variability in
Ref. [31]

For further information see ‘Parameterisation of l(t)’ and ‘Fitting Other Parameters’ in Text S1.
doi:10.1371/journal.pcbi.1002416.t001
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quantities: mRNA expression levels, and then (through further

extension) protein expression levels. Noise in protein expression

levels directly affects many cellular properties, as this noise causes

cell-to-cell differences in the functional machinery available to

perform cellular processes. Here we will investigate the influence

of the mitochondrial variability suggested by the parameterisation

of our model from experimental data on existing models for

mRNA and protein expression. We connect our findings with the

substantial existing body of literature on this topic in the

Discussion section.

The production of mRNA and protein within a cell is often

modelled using a master equation approach, addressing the

probability of observing a given number of molecules at a given

time. This analytical framework lends itself to the inclusion of our

results for time-varying transcription rate (see Methods). Numer-

ically, several studies have proposed techniques for incorporating

time-varying rates in chemical kinetic systems [46,47]: we use

Shahrezaei et al.’s modification [45] to the Gillespie simulation

method [63] to simulate our model system. This protocol allows us

to investigate the relative importance of intrinsic contributions

(resulting in differences in expression levels between identical

genes within a single cell) and extrinsic contributions (resulting in

differences in expression between identical genes in different cells

in a population).

Fig. 6 shows the increase in mRNA expression (from a level of

zero at the start of the simulation) from our analytic approach

incorporating changing transcription rate, and in simulations run

using (see Methods) a parameter set from Raj et al. [16], in two

scenarios: one involving only intrinsic noise effects (no noise due to

mitochondrial variability) and one involving extrinsic noise in

transcription rate due to mitochondrial mass, functionality, and cell

volume variability, of the magnitudes found through parameterising

our model with experimental data. It can be seen that mitochondrial

variability leads to a large increase in the total noise in mRNA

expression levels: without extrinsic factors, the noise in mRNA

expression at a given time (t~8:3 hours) was gm^0:04, whereas

gm^0:40 with extrinsic factors. We note that the means for the

intrinsic and extrinsic noise cases differ: this result is due to the

nonlinear dependence of transcription rate on ATP concentration, so

that ½ATP� distributions with the same mean but different variances

may yield transcription rate distributions with different means.

We can also perform simulations on the more complicated system

involving protein production (see ‘mRNA & Protein Levels’ in Text

S1). With values from Raj et al. [16] for protein degradation and

translation rate (see Methods), this approach allows us to simulate

dual reporter experiments, where the expression of two distinct but

identically regulated protein-encoding genes is measured. Each

protein was translated from a different mRNA strand, so these

simulations tracked four quantities: the expression levels of the two

mRNAs and the two proteins. Simulations were performed on

synchronised and asynchronous cells, and with sn,sf set to their

model values and set to zero. In these simulations, mRNA molecules

and proteins were also distributed binomially between daughter

cells at mitosis (see Methods).

Dual reporter simulations performed with the parameterisation

chosen from Raj et al. [16] yield very low values for the magnitude

of intrinsic noise. This low intrinsic noise was found to be due to

the high copy number of proteins resulting from the parameter-

isation. To explore noise in systems with lower expression levels,

we lowered the copy number of proteins by increasing the rates of

mRNA and protein degradation (see Methods). Fig. 7 shows the

resulting expression levels in two proteins with and without various

sources of extrinsic noise, at the two different degradation rate

protocols. These results show that, in our model, mitochondrial

variability dominates the noise in protein expression levels. The

spread of protein levels with mitochondrial and volume variability

is much greater than the two-fold range achieved through cell

cycle variability alone. Fig. 7 also illustrates that cells with higher

mitochondrial mass and functionality generally have higher

protein expression levels, though inheritance noise makes this

correlation weaker.

In our model, we find that energy variability arising through

mitochondrial stochasticity is the dominant source of variability in

Figure 5. Variability in mitochondrial mass and functionality
can both contribute to noise in transcription rate. Effects of
changing variability in mitochondrial mass inheritance (sn) and
functionality (sf ) on overall transcription rate noise gl . This contour plot
shows the value of gl for a given combination of sn,sf . More stochasticity
associated with inheritance of mitochondrial properties leads to higher
transcription rate noise, and stochasticity in both mass and functional
inheritance plays an important role in transcription rate noise. Contour
lines on the bottom surface mark different values of gl . The ‘X’ mark
denotes the default parameterisation of our model. Other contour lines
show that this relationship remains essentially identical when variability
due to cell cycle stage and volume inheritance is removed, suggesting
that sn and sf are the key sources of transcription rate noise.
doi:10.1371/journal.pcbi.1002416.g005

Figure 6. Mitochondrial variability contributes strongly to
noise in mRNA levels. Analytic and modified Gillespie simulation
results for time evolution of mRNA levels with and without
mitochondrial and volume variability. Bars show the mean and standard
deviation of the corresponding distribution at a given time. Red (z)
give simulated results without inherited variability. Black (�) give
analytic results without inherited variability. Blue (|) give simulated
results with mitochondrial and volume variability, displaying much
greater variance in mRNA expression. Bars are slightly offset in the x-
direction for clarity. The inset shows two example time series for both
simulated cases.
doi:10.1371/journal.pcbi.1002416.g006
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transcription rate, mRNA and protein expression levels. However,

we note that the causal factors of stochasticity in mRNA and

protein levels within the cell are significantly more complicated

than the simple transcriptional model presented above. The rates

of many of the processes involved in more extended models are

functions of many factors which our model does not include. The

inclusion of these complicating terms rapidly makes an analytic

description of the model impossible. However, we note that

stochastic simulation techniques may be used to explore the

behaviour of complex model given estimates for the functional

dependence of process rates on extrinsic variables [45].

We also note that several studies have observed a decrease in

intrinsic noise at higher levels of protein expression [15,27]. We do

observe such a decrease, though in the default parameterisation

the magnitude of this effect is very small owing to the consistently

low intrinsic noise levels.

Mitochondrial noise, by modulating transcription rate,
can affect stem cell differentiation

As an illustrative application of our model, demonstrating its

physiological relevance, we consider how, through the extrinsic

effects of [ATP] on protein levels, a link between mitochondrial

content and stem cell differentiation behaviour may arise.

Differentiation dynamics in stem cells have often been modelled

as the result of expression asymmetries in lineage regulation genes

that interact in a regulatory network [64–67], but the initial

sources of this expression variability have not been clearly

elucidated and are a topic of active debate. Here we show that

transcription rate variability resulting from mitochondrial vari-

ability can affect the dynamics of expression of such control genes.

Experimentally, a link between stem cell differentiation and

mitochondria was suggested by a recent study in mouse embryonic

stem cells [38], showing that pluripotent cells with low mitochon-

drial membrane potential had higher in vitro differentiation

propensity, whereas those with higher membrane potential

remained undifferentiated and formed large teratomas.

We explore two recent models for the cell fate decision between

erythroid and myeloid cell fates directed by the cross-antagonistic

master lineage regulators GATA1 and PU.1. One model, by

Huang et al. [68], consists of a symmetric coupled ODE system for

the expression levels of these two genes, including cross-repression

and self-activation term (see Methods). Another model, by

Chickarmane et al. [69], contains a similar but asymmetric ODE

model, expanded to include interactions with a postulated third

species which is promoted by GATA1 and represses PU.1. The

Chickarmane et al. model also includes external signalling terms

which may act to promote GATA1 and PU.1, and repress the

third species. In these models, cell states are defined by the relative

levels of expression of these genes, such that undifferentiated cells

have comparable levels of each transcription factor, while the two

differentiated cell types correspond to a state with high levels of

one factor and low levels of the other. The interactions between

the genes are parameterised by variables such as self-activation

and cross-repression rates (see Methods). The phase space for both

these models comprises three attractor basins, corresponding to

the progenitor cell type and two differentiated cell types.

Within the Huang model, at low protein expression levels,

smaller perturbations are required to shift attractor basins than at

high expression levels – a feature consistent across a large range of

parameterisations. Varying the parameterisation of the model

(modelling differentiation-inducing signalling) changes the struc-

ture of these basins, so that the central undifferentiated basin

becomes more or less stable to subsequent perturbation. We vary

the default parameterisation of the model in an attempt to assess

the effect of changes in transcription and translation rates (see

Methods). We find that when the parameters related to the rate of

production of proteins are low, the central, undifferentiated state is

less stable than when they are high (see Fig. 8A), with a smaller

volume of phase space leading to the undifferentiated basin.

Within the Chickarmane model, a different effect is observed.

As before, we investigated the volume of phase space correspond-

ing to the basin representing the undifferentiated state. We used a

nonzero value for the external signalling term promoting PU.1

and explored the system at different transcription rates (see

Methods). We found that increasing the transcription rate led to a

decrease in the range of values of the external interaction which

supported a stable undifferentiated state (see Fig. 8B). This

decrease in the stability of the undifferentiated state arose from a

smaller volume of phase space leading to the undifferentiated basin

as transcription rate increased, with more phase space occupied by

the GATA1 basin. This result contrasts with the increased stability

of the Huang model at high transcription rate, due to the

importance of the third species (the expression of which is

dependent on transcription rate): at high transcription rate, the

increased strength of the combined effect of self-activating GATA1

Figure 7. Effects of mitochondrial variability dominate protein
expression variability in our model. Dual reporter simulation with
different sources of noise in our protein expression simulations. All plots
except (E) are normalised so that the highest protein expression level in
the cell population is 1. Red (diamonds) show results from Raj et al.’s
default parameterisation [16] used to model transcription, translation
and degradation (see Methods). Blue (triangles) show results from this
parameter set with degradation rates increased 100-fold. Protein levels
are shown from population of (A) unsynchronised cells with mitochon-
drial and volume variability, (B) synchronised cells with mitochondrial
and volume variability, (C) unsynchronised cells with no mitochondrial
or volume variability, and (D) synchronised cells with no mitochondrial
or volume variability. (E) Mean protein expression levels in the default
parameterisation of Raj et al. with the product of mitochondrial mass
and function nf , in the system corresponding to (A). (F) The equivalent
plot of (A) with translation rates independent of ½ATP�.
doi:10.1371/journal.pcbi.1002416.g007
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and production of the third species shifts the basin structure

strongly towards GATA1.

These results suggest that cell-to-cell variability in mitochondrial

mass and function may, through induced variability in transcrip-

tion rate, have a significant effect on the stability of bipotent cells.

If differentiation dynamics are asymmetric and involve an

intermediate species (as in the Chickarmane model), we find that

high transcription rate destabilises the undifferentiated state. This

destabilisation may be viewed as a result of the increased sensitivity

of the system to perturbations: the asymmetric regulatory

architecture means that a small increase in GATA1 will be

quickly amplified at high transcription rate, as more GATA1 and

X are quickly produced. If differentiation dynamics are symmetric

and do not involve another species (as in the Huang model), high

transcription rates increase the width of the basin corresponding

to the undifferentiated state, acting to stabilise this state. This

stabilisation is due to the increased robustness to perturbations

afforded by the high production rate of both species at high

transcription rate: without asymmetric interactions, the higher

expression level of both genes makes the system less responsive to

small perturbations. The results that emerge from this symmetric

case gives results that are qualitatively comparable to an

experimental study [38] in which more cells with higher total

mitochondrial membrane potential remained undifferentiated,

suggesting that high mitochondrial performance stabilises the

undifferentiated state.

Another, higher-order effect may conceivably play a role in

both situations: several studies have found that, at high protein

abundance levels (which may result from high transcription rates),

intrinsic noise levels in protein expression decrease. While the

parameterisation of our dual reporter studies is such that these

effects are small, the fact that less noise is expected at higher

protein expression levels suggests a third mechanism by which

high mitochondrial content may stabilise pluripotent cells. The

contrasting results highlight the potential of experimental

investigation of the effects of global transcription rate on the

stability of multipotent states to inform of additional qualitative

behaviors that models of lineage decision should be expected to

exhibit.

Discussion

We have introduced a crude mathematical model for the effects

of stochasticity in mitochondrial segregation and functionality on

transcription rate in cells. Our model, while simple enough to

allow some analytic treatment, reproduces a good number of

experimentally observed features concerning the interplay of

mitochondrial properties and transcription rate. We analyse our

model and find that mitochondria provide extrinsic noise

contributions to transcription both through their uneven segrega-

tion at mitosis and through variability in their functionality.

We note that, in addition to requiring variability in the amount

of mitochondrial mass, an adequate fit to our data required us to

consider variability in the function of mitochondria. This connects

with the wealth of recent experimental and theoretical interest

regarding the causes and control of heterogeneity of mitochondrial

function [34,35,42,44] and strengthens the case for the broad

physiological relevance of functional variability.

We incorporate our results for mitochondrial-sourced extrinsic

noise into existing models for mRNA and protein production, and

show that mitochondrial noise can lead to significant variability

between cells in a population. We also suggest that transcriptional

variability resulting from mitochondrial noise may affect stem cell

differentation, and illustrate this result with an analysis of two

recent regulatory network-based models for stem cell differentia-

tion. We find that the quantitative effect of transcription rate

variability on stem cell differentiation depends on the architecture

of the regulatory network under consideration.

Several recent studies have investigated the interplay between

other possible sources of extrinsic noise in various organisms.

Before concluding, we will discuss connections to this body of

literature. The recent study by Huh and Paulsson [29] found that

variability in protein levels due to uneven inheritance at mitosis

might explain a body of experimental data that was previously

assumed to result from noise in the protein production process. A

mathematical study by Rausenberger and Kollmann [21] also

investigated the effects of inheritance stochasticity on cellular

noise. Our work bears significant parallels to these ideas, in that we

postulate uneven inheritance of mitochondria to be a substantial

contributing factor to noise in all cellular processes that require

ATP, including the mechanisms of protein production. Our

philosophy also mirrors part of the work of Huh and Paulsson in

that our model considers a subset of cellular properties (in our

case, mitochondrial partitioning and functionality, and cell

volume) to provide all stochastic influences, with all other cellular

properties evolving deterministically.

The possible role of ATP as the proxy through which

mitochondrial variability affects other cellular processes ties in

with an early prediction of Raser and O’Shea [14] who suggested

that the dominance of extrinsic noise in expression variability

Figure 8. Transcription rate affects the stability of model stem
cell systems. In both diagrams, curves delineate the boundary of the
attractor basin corresponding to the undifferentiated cell state. Red
(solid) to black (dotted) lines show the basin structure as transcription
rate l increases through the given values. (A) The structure of the
undifferentiated attractor basin in the Huang model given different
transcription parameters, showing the widening of the stable
undifferentiated region at high transcription rate. (B) The structure of
the undifferentiated attractor basin in the Chickarmane model, showing
a decrease in undifferentiated basin size as transcription rate increases.
The activation-repression structure of both models is illustrated – in (B),
external terms representing the activation of GATA1 and X exist but are
set to zero in our analysis to allow PU.1 to be expressed under some
conditions.
doi:10.1371/journal.pcbi.1002416.g008
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across a wide range of proteins could result from fluctuations in a

factor that affects expression for all genes. ATP, being required for

the processes of transcription and translation, meets this criterion.

Shahrezaei et al. [45] illustrate the fact that extrinsic noise can

influence intrinsic noise, through the former’s effects on the rate

constants involved in the latter. This influence plays an important

role in our model, where extrinsic variability of mitochondrial

properties influences the synthesis rates of mRNA and protein

through their dependence on ½ATP�. The ubiquity of ATP as an

energy currency within the cell suggests that the rates of other

intrinsic processes may be affected by the extrinsic variability we

describe.

The link between the process of transcription and noise in

protein expression levels that we explore in the last section of this

paper is related to the findings of Blake et al. [22] who found that

protein expression noise depends on transcription efficiency. In

our model, the modulation of transcription rate by noisy ½ATP�
has downstream effects on protein noise levels.

Sigal et al. [26], in a study of expression levels over a range of

proteins, find cell cycle stage to be a significant contributor to

extrinsic noise in protein abundance. Volfson et al. [19] used a

mathematical framework to similarly identify population dynam-

ics, and upstream transcription factors, as key extrinsic contrib-

utors to cellular noise. Our model is compatible with these results,

as cells at different cell cycle stages will have had different protein

expression histories over their lifetimes. However, we anticipate

that mitochondrial variability will also provide a significant

contribution to protein expression noise, through modulation of

upstream processes.

An in-depth study by Newman et al. in yeast cells [15] found a

variety of protein-specific differences in expression noise according

to transcription mode and protein function. Our model does not

capture protein expression noise in this level of detail. The study of

Newman et al. also characterised the contribution of intrinsic and

extrinsic factors to total noise levels as a function of protein

abundance. They found that while total expression noise did not

scale with protein abundance, noise levels decreased with

abundance when extrinsic factors were controlled for: suggesting

that extrinsic factors were responsible for maintaining total noise

levels as abundance increased. This suggestion that extrinsic noise

increases in strength with protein abundance is captured in our

protein level simulations.

A study by Bar-Even et al., also in yeast cells [27], found intrinsic

noise to be a substantial contributor to total noise, especially for

proteins at intermediate abundance levels, with intrinsic contri-

butions becoming less significant as expression levels increase (a

similar result to Newman et al.). In this and several of the other

studies above [15,22], fluctuations in mRNA number were

postulated to be the most important source of noise in protein

expression levels. Our model suggests that, through the link

between mitochondrial properties and transcription rate, mito-

chondrial variability strongly influences this important noise

source and thus may be an important fundamental source of

stochasticity in cellular biology.

Raj et al. [16] studied noise in mRNA expression in detail in

mammalian cells (one of few studies to do so), and identified

intrinsic effects as the dominant factors. Their study found that

genes located in close proximity to each other displayed

synchronised expression, while the expression of genes that were

physically separate was unsynchronised, suggesting that local

rather than global effects determine the expression levels of genes.

While this study demonstrated that intrinsic effects significantly

contribute to total noise in some cases, it was not explicitly shown

that the magnitude of these effects outweighed extrinsic effects.

Our results are compatible with this view that intrinsic noise plays

an important role in gene expression, but we suggest that extrinsic

noise due to energy variability may also be an important

contributor to overall noise levels.

We do not attempt to capture these mRNA processes explicitly:

rather, we take transcription rate to be a function of ½ATP� as

found in experiments [31]. However, we note the result that the

measured functional form of this relationship changes in

experiments in which chromatin was decondensed. This result

suggests that the functional form of transcription rate with ½ATP�
allows us to capture some effects of the ATP-dependent chromatin

remodelling process.

Conclusions
We find, through a phenomenological model constructed to

reproduce recent data on mitochondrial and ATP variability, that

stochastic inheritance of mitochondria at mitosis and variability in

mitochondrial function may be important sources of noise in

transcription. By extension, these factors may contribute signifi-

cantly to noise in protein expression further downstream. We have

proposed experimental tests to refine our model and demonstrate

its application in existing models for mRNA and protein

production and stem cell differentation, and discussed how these

findings integrate into the current understanding of extrinsic noise

in cellular biology. In particular, what our paper suggests is the

need for multimodal single cell experiments through time (and

through division) investigating coarse-grained measures of energy

status, cellular volume, mitochondrial mass, and global rates of

transcription and translation. Cellular variability is of central

physiological importance but we suggest that to understand this we

must elucidate the relationships between certain core variables,

including the relationship between the machinery of expression

and degradation and the energy status of the cell.

Methods

Parameterisation of our model from experimental data
We used a subset of available experimental data (shown in Fig. 2)

to choose numerical values for our key parameters. Some

parameter values were fixed, in the sense that maximising the

agreement between predictions from our model and a single

experimental study allowed an optimal value to be chosen

straightforwardly (si,sv, and the ratio b=a were parameterised

by data from Ref. [31] (respectively the sigmoidal relationship

between ½ATP� and transcription rate, the variance associated

with volume partitioning, and the variance associated with

mitochondrial partitioning), v� by the maximal cell volume

observed in data from Ref. [53], and c by comparing the mean

properties of simulated cells to mean ATP levels reported in a

population of HeLa cells in Ref. [70]). Other parameters

influenced a range of predictions and values for these parameters

were chosen by optimising the fit to experimental data across the

set of results that they influenced (see ‘Fitting Other Parameters’ in

Text S1).

Table 1 summarises the parameters and values employed in our

model.

Model specifics. In the following we provide details of our

model. The key equations specifying the key dynamics of cells in

our model are given by Eqns. 1–4. The coupled ODEs in our

model admit an analytic solution by simple integration:

v(t)~v0z
n0a

b
(exp(bft){1), ð5Þ
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n(t)~n0exp(bft), ð6Þ

The reader will note that a variety of models for mitochondrial

and volume growth will yield similar forms. In addition, other

functional forms for the level of ATP may be suggested. A selection

of these alternative forms are explored in ‘Other Models’ in Text

S1. Within this model, at mitosis,

v1~N
v�

2
,sv

� �
ð7Þ

n1~N
n

2
,

ffiffiffi
n

4

r� �
, ð8Þ

where N (m,s) is a normal distribution with mean m and variance

s2, and v2~v{v1, n2~n{n1 determine the daughter volumes

v1,v2 and mitochondrial masses n1,n2. The variances of the

mitochondrial distribution is chosen to represent a binomial

distribution (B(n,p)^N (np,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1{p)

p
), with p~

1

2
, for high n).

The variance of the volume distribution is chosen to match

experimental data on volume partitioning.

Functionality evolves through changes at mitosis events, which

follow an AR(1) process. A daughter cell’s functionality f D is

determined from its parent’s functionality f P:

f D~faf PzfczN (0,sf ) ð9Þ
Upon mitosis, both daughter cells inherit the same f D value,

drawn from Eqn. 9. Once chosen, a cell’s functionality remains

constant throughout one cell cycle. We can model treatment with

anti- and pro-oxidants by respectively increasing and decreasing

fc, raising or lowering the mean functionality of mitochondria.

With sf ~0:3, there is a very small but finite chance that cells will

inherit zero (or lower) functionality. To avoid this unphysical case,

we impose a cutoff of 0:01 on mitochondrial functionality. Values

under this cutoff are resampled from Eqn. 9. Another model,

where f varies continuously within a cell cycle, is considered in

‘Other Models’ in Text S1.

Virtual mitochondria
In our model, the standard deviation in mitochondrial mass at

mitosis is a function of the number of virtual mitochondria in the cell,

sn~

ffiffiffi
n

4

r
, from binomial partitioning. We can vary the number of

virtual mitochondria in the cell while keeping the total mitochondrial

volume constant, by changing the volume assigned to an individual

virtual mitochondrion. Let an individual virtual mitochondria have

volume
vn

N
, and let there be N virtual mitochondria in a cell. The

total mitochondrial volume is vn, and the mean inherited

mitochondrial volume is half of this. The standard deviation in

virtual mitochondrial number from a binomial distribution of the

virtual mitochondria is

ffiffiffiffiffi
N

4

r
, so the standard deviation of

mitochondrial volume is
2vnffiffiffiffiffi

N
p . A standard deviation of sn then

corresponds to N~
4v2

n

s2
n

virtual mitochondria per cell.

Cell dynamics simulations
To simulate a population of cells, we used a simple Euler

method to solve the dynamic equations. A population of

N~10000 cells was simulated. When mitosis occurred, a random

cell from the population was chosen for replacement by the new

cell. To measure distributions, this procedure was continued until

the distributions stabilised. To measure sister-sister and between-

generation correlations, a list of relationships between cells was

maintained, with sister pairs only sampled when both sisters

underwent an entire cell cycle without replacement. We note that

this removal of randomly-chosen cells may potentially introduce

artefacts into the results, as the constant probability of cell removal

means that the probability of a cell surviving to a certain age is

decreasing. We checked our results with a different simulation

protocol: running the system and allowing exponential growth up

to 106 cells, with no removal. The resulting distributions were

indistinguishable from the first protocol, showing that the removal

rate is low enough so that the statistics are not affected.

mRNA & protein expression simulations
For the simple system illustrating mRNA expression levels

alone, cells were simulated using the modification of Shahrezaei

et al.’s [45] to the Gillespie simulation method [63] in two

scenarios: one involving only intrinsic noise (sn~sv~sf ~0) and

one involving extrinsic noise due to mitochondrial mass,

functionality, and cell volume variability. In both cases, the initial

copy number of mRNA molecules was set to zero, to illustrate

differences in the dynamics of the system: transcription started at

the birth of the cell, and there were no effects from mRNA

inheritance. In the intrinsic noise experiments, a population of

cells were simulated from identical initial conditions, with their

n,v,f values set to the means of those variables obtained from

simulations. The variability in mRNA expression levels in these

cells was therefore solely due to intrinsic noise. For the extrinsic

noise simulations, mRNA expression was simulated in the

heterogeneous population of cells that resulted from dynamic

simulation. An ensemble of 2500 cells was analysed for both cases

and the mRNA content at each timestep recorded.

To simulate the more complicated systems and investigate

inheritance effects, we coupled the Shahrezaei et al. simulation

protocol with the simple ODE solver so that simulation of a popu-

lation of cells growing and producing mRNA and protein involved

the following algorithm. 1) Use the ODE solver to calculate a cell’s

time of mitosis and the time series of volume and transcription rate

throughout the cell lifetime. 2) Use Shahrezaei et al.’s method to

compute the time behaviour of mRNA and protein levels given these

time series for production rates. 3) Create daughter cells with noisy

partitioning of volume, mitochondrial mass (binomial) and function-

ality (AR(1)), and mRNA and protein copy numbers (binomial).

After Raj et al. [16], we employ the following model values for

birth (l) and death (j) rates of mRNA (m) and protein (n): SlmT~

0:06s{1, SlnT~0:007s{1,jm~7|10{5s{1,jn~1:1|10{5s{1.

In the case of birth rates, we used these mean values to scale the

l(½ATP�) curves from das Neves et al. [31] so that the mean ½ATP�
level observed in a population gave the mean SlT values from Raj

et al. (see ‘mRNA & Protein Levels’ in Text S1). We also ran

experiments with the degradation rates increased 100-fold:

jm~7|10{3s{1, jn~1:1|10{3s{1, to explore the behaviour

of the system at lower expression levels.

Experiments
CMXRos labelling was done according to manufacturer

(invitrogen) instructions, cells were incubated with the probe

(75 nM) for 15 min. at 37 C and washed with warm PBS.

For the dual dye experiments, cells were loaded simultaneously

with CMXRos and MitoTracker Green FM dye (Molecular

Probes) for 20 min and after a brief PBS rinse fixed in PBS with

4% paraformaldehyde.
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Cell cycle length experiments were done by growing cells in the

presence of media alone or containing either the anti-oxidant

Dithiothreitol (250 microM DTT) or the pro-oxidant Diamide (50

microM). Cell cycle length was measured as the time interval

between two mitotic events in a single cell, analysed by live cell

imaging using the Cell IQ platform and image analysis software

(Chipman Tech.).

In the flow cytometry experiments, tripsinised Hela cells were

washed and incubated with 20 nM MitoTracker Green FM dye

(Molecular Probes) in medium at 37 C for 15 min, and then washed.

Cells were analyzed using flow cytometry (Dako CyAn ADP).

Master equations
Let us consider the master equation for the transcription

process, describing the probability of observing the system with m
mRNAs at time t:

LPm

Lt
~l(t)Pm{1zj(mz1)Pmz1{(l(t)zjm)Pm, ð10Þ

where Pm is the probability of observing m mRNAs at a given time

t, l(t) is transcription rate, and j is an mRNA degradation rate.

Using a linear approximation for l(t) (see ‘Parameterisation of

l(t)’ in Text S1), we can solve this by using a generating function

approach (see ‘mRNA & Protein Levels’ in Text S1). The mean,

variance, and probability distribution of mRNA copy number at

arbitrary time are given by:

mm~(a3z1)m0{1ea1za2 (a1za1a3zm0) ð11Þ

s2
m~(a3z1)m0 ea1za2 a1za2

1z
m0

a3z1

�

| 1z2a1z
m0{1

a3z1

� �
{(a3z1)m0z2

|ea1za2 (a1za1a3zm0)2)

ð12Þ

Pm~a
m0{m

3 ea2
m0!

m!(m0{m)!1
F1({m; m0{mz1;{a1a3) ð13Þ

where 1F1 is the Kummer confluent hypergeometric function,

a1~
1

j
czbt{ce{jtz

b

j
(e{jt{1)

� �
, a2~{m0tj{a1 and a3~

ejt{1.

Stem cell model
The progenitor cell differentation model of Huang et al. [68]

consists of the following equations for the evolution of protein

expression levels x1 (GATA1) and x2 (PU.1):

dx1

dt
~a1

xn
1

hn
a1zxn

1

zb1
hn

b1

hn
b1zxn

2

{k1x1 ð14Þ

dx2

dt
~a2

xn
2

hn
a2zxn

2

zb2
hn

b2

hn
b2zxn

1

{k2x2 ð15Þ

In this parameter set, a variables are self-activation rates, b

variables are cross-repression rates, k are decay rates, and h and n
control the functional form of these processes. Huang et al. show that

altering these parameters changes the structure of the corresponding

attractor landscape, so that the central undifferentiated attractor

basin changes in size, affecting the predisposition of the system to

differentiate. This landscape change gives a ‘priming’ of the system

such that the effect of subsequent asymmetries may vary. In this

study, we vary the landscape by symmetrically varying a and b, the

parameters associated with activation and repression, from the

default parameterisation ai~bi~ki~1,n~4,hai~hbi~0:5 for

i~1,2. Specifically, we modulated a and b with a multiplicative

factor l: a?la,b?lb. We draw the connection between higher

values of a and b and higher transcription and translation rates, as

the rate of production of chemical species is increased by an increase

in these parameters.

The model of Chickarmane et al. [69] involves a relationshup

between three dynamic variables:

d½G�
dt

~
a1Aza2½G�

1zb1Azb2½G�zb3½G�½P�
{c1½G� ð16Þ

d½P�
dt

~
d1Bzd2½P�

1zE1BzE2½P�zE3½G�½P�zE4½G�½X �
{c2½P� ð17Þ

d½X �
dt

~
f1½G�

1zg1½G�zg2C
{c3½X � ð18Þ

where ½G�,½P�,½X � are the concentrations of GATA1, PU.1 and a

postulated chemical species X respectively. A,B,C are external

signalling factors: A and B promote GATA1 and PU.1 respectively,

and C represses X. Other variables take default values a1~

b1~d1~E1~b3~E3~1, a2~b2~d2~E2~0:25, E4~0:13, c1~

c2~c3~0:01, f1~g1~0:01, g2~10. To vary transcription rates,

we modulate a,d and f terms with a multiplicative factor which we

take to be proportional to transcription rate l. We used B~0:5 with

A~C~0, allowing an external signal that promotes PU.1, to

promote stability of the undifferentiated state.

Supporting Information

Text S1 Supplementary PDF document containing mathematical

details of our model and alternative approaches to modelling the

effects of mitochondrial variability.

(PDF)
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