190 research outputs found

    Plastron induced drag reduction and increased slip on a superhydrophobic sphere

    Get PDF
    On low contact angle hysteresis superhydrophobic surfaces, droplets of water roll easily. It is intuitively appealing, but less obvious, that when such material is immersed in water, the liquid will flow more easily across its surface. In recent experiments it has been demonstrated that superhydrophobic surfaces with the same high contact angle and low contact angle hysteresis may not, in fact, have the same drag reducing properties. A key performance parameter is whether the surface is able to retain a layer of air (i.e. a plastron) when fully immersed. In this report, we consider an analytical model of Stokes flow (i.e. low Reynolds number, Re, creeping flow) across a surface retaining a continuous layer of air. The system is based on a compound droplet model consisting of a solid sphere encased in a sheathing layer of air and is the extreme limit of a solid sphere with a superhydrophobic surface. We demonstrate that an optimum thickness of air exists at which the drag on this compound object is minimized and that the level of drag reduction can approach 20 to 30%. Physically, drag reduction is caused by the ability of the external flow to transfer momentum across the water-air interface generating an internal circulation of air within the plastron

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m

    Get PDF
    Upon ascent to high altitude, cerebral blood flow (CBF) rises substantially before returning to sea-level values. The underlying mechanisms for these changes are unclear. We examined three hypotheses: (1) the balance of arterial blood gases upon arrival at and across 2 weeks of living at 5050 m will closely relate to changes in CBF; (2) CBF reactivity to steady-state changes in CO2 will be reduced following this 2 week acclimatisation period, and (3) reductions in CBF reactivity to CO2 will be reflected in an augmented ventilatory sensitivity to CO2. We measured arterial blood gases, middle cerebral artery blood flow velocity (MCAv, index of CBF) and ventilation () at rest and during steady-state hyperoxic hypercapnia (7% CO2) and voluntary hyperventilation (hypocapnia) at sea level and then again following 2–4, 7–9 and 12–15 days of living at 5050 m. Upon arrival at high altitude, resting MCAv was elevated (up 31 ± 31%; P < 0.01; vs. sea level), but returned to sea-level values within 7–9 days. Elevations in MCAv were strongly correlated (R2= 0.40) with the change in ratio (i.e. the collective tendency of arterial blood gases to cause CBF vasodilatation or constriction). Upon initial arrival and after 2 weeks at high altitude, cerebrovascular reactivity to hypercapnia was reduced (P < 0.05), whereas hypocapnic reactivity was enhanced (P < 0.05 vs. sea level). Ventilatory response to hypercapnia was elevated at days 2–4 (P < 0.05 vs. sea level, 4.01 ± 2.98 vs. 2.09 ± 1.32 l min−1 mmHg−1). These findings indicate that: (1) the balance of arterial blood gases accounts for a large part of the observed variability (∼40%) leading to changes in CBF at high altitude; (2) cerebrovascular reactivity to hypercapnia and hypocapnia is differentially affected by high-altitude exposure and remains distorted during partial acclimatisation, and (3) alterations in cerebrovascular reactivity to CO2 may also affect ventilatory sensitivity

    Increasing capacity for the treatment of common musculoskeletal problems: A non-inferiority RCT and economic analysis of corticosteroid injection for shoulder pain comparing a physiotherapist and orthopaedic surgeon

    Get PDF
    Background Role substitution is a strategy employed to assist health services manage the growing demand for musculoskeletal care. Corticosteroid injection is a common treatment in this population but the efficacy of its prescription and delivery by physiotherapists has not been established against orthopaedic standards. This paper investigates whether corticosteroid injection given by a physiotherapist for shoulder pain is as clinically and cost effective as that from an orthopaedic surgeon. Methods A double blind non-inferiority randomized controlled trial was conducted in an Australian public hospital orthopaedic outpatient service, from January 2013 to June 2014. Adults with a General Practitioner referral to Orthopaedics for shoulder pain received subacromial corticosteroid and local anaesthetic injection prescribed and delivered independently by a physiotherapist or a consultant orthopaedic surgeon. The main outcome measure was total Shoulder Pain and Disability Index (SPADI) score at baseline, six and 12 weeks, applying a non-inferiority margin of 15 points. Secondary outcomes tested for superiority included pain, shoulder movement, perceived improvement, adverse events, satisfaction, quality of life and costs. Results 278 participants were independently assessed by the physiotherapist and the orthopaedic surgeon, with 64 randomised (physiotherapist 33, orthopaedic surgeon 31). There were no significant differences in baseline characteristics between groups. Non-inferiority of injection by the physiotherapist was declared from total SPADI scores at 6 and 12 weeks (upper limit of the 95% one-sided confidence interval 13.34 and 7.17 at 6 and 12 weeks, respectively). There were no statistically significant differences between groups on any outcome measures at 6 or 12 weeks. From the perspective of the health funder, the physiotherapist was less expensive. Conclusions Corticosteroid injection for shoulder pain, provided by a suitably qualified physiotherapist is at least as clinically effective, and less expensive, compared with similar care delivered by an orthopaedic surgeon. Policy makers and service providers should consider implementing this model of care

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on twenty research projects.Charles S. Draper Laboratories Contract DL-H-467138Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038U.S. Air Force - Office of Scientific Research Contract F49620-91-C-0091MIT Lincoln LaboratoryNational Science Foundation Grant ECS 90-12787Fujitsu LaboratoriesNational Center for Integrated PhotonicsHoneywell Technology CenterU.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-1-0717U.S. Navy - Office of Naval Research (MFEL) Grant N00014-91-J-1956National Institutes of Health Grant NIH-5-R01-GM35459-09U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0301MIT Lincoln Laboratory Contract BX-5098Electric Power Research Institute Contract RP3170-25ENEC
    corecore