1,598 research outputs found

    Phase diagram of bismuth in the extreme quantum limit

    Full text link
    Elemental bismuth provides a rare opportunity to explore the fate of a three-dimensional gas of highly mobile electrons confined to their lowest Landau level. Coulomb interaction, neglected in the band picture, is expected to become significant in this extreme quantum limit with poorly understood consequences. Here, we present a study of the angular-dependent Nernst effect in bismuth, which establishes the existence of ultraquantum field scales on top of its complex single-particle spectrum. Each time a Landau level crosses the Fermi level, the Nernst response sharply peaks. All such peaks are resolved by the experiment and their complex angular-dependence is in very good agreement with the theory. Beyond the quantum limit, we resolve additional Nernst peaks signaling a cascade of additional Landau sub-levels caused by electron interaction

    Schr\"odinger Deformations of AdS_3 x S^3

    Full text link
    We study Schr\"odinger invariant deformations of the AdS_3 x S^3 x T^4 (or K3) solution of IIB supergravity and find a large class of solutions with integer and half-integer dynamical exponents. We analyze the supersymmetries preserved by our solutions and find an infinite number of solutions with four supersymmetries. We study the solutions holographically and find that the dual D1-D5 (or F1-NS5) CFT is deformed by irrelevant operators of spin one and two.Comment: 23 page

    The Threat of Capital Drain: A Rationale for Public Banks?

    Get PDF
    This paper yields a rationale for why subsidized public banks may be desirable from a regional perspective in a financially integrated economy. We present a model with credit rationing and heterogeneous regions in which public banks prevent a capital drain from poorer to richer regions by subsidizing local depositors, for example, through a public guarantee. Under some conditions, cooperative banks can perform the same function without any subsidization; however, they may be crowded out by public banks. We also discuss the impact of the political structure on the emergence of public banks in a political-economy setting and the role of interregional mobility

    Therapeutic and immunomodulatory activities of short-course treatment of murine visceral leishmaniasis with KALSOMEℱ10, a new liposomal amphotericin B

    Get PDF
    Visceral leishmaniasis (VL), a potentially fatal disease, is most prevalent in the Indian subcontinent, East Africa and South America. Since the conventional antileishmanial drugs have many limitations we evaluated a new ergosterol rich liposomal amphotericin B formulation, KALSOMEℱ10 for its leishmanicidal efficacy, tolerability and immunomodulatory activity. Normal healthy mice were treated with 3.5 mg/kg single and 7.5 mg/kg single and double doses ofKALSOMEℱ10. Liver and kidney function tests were performed fourteen days after treatment. Next, normal mice were infected with Leishmania donovani amastigotes. Two months post infection they were treated with the above mentioned doses of KALSOMEℱ10 and sacrificed one month after treatment for estimation of parasite burden in the liver and spleen by Limiting Dilution Assay. Leishmanial antigen stimulated splenocyte culture supernatants were collected for cytokine detection through ELISA. Flow cytometric studies were performed on normal animals treated with KALSOMEℱ10, Amphotericin B (AmB) and AmBiosome to compare their immunomodulatory activities. The drug was found to induce no hepato- or nephrotoxicities at the studied doses. Moreover, at all doses, it led to significant reduction in parasite burden in two month infected BALB/c mice, with 7.5 mg/kg double dose resulting in almost complete clearance of parasites from both liver and spleen. Interestingly, the drug at 7.5 mg/kg double dose could almost completely inhibit the secretion of disease promoting cytokines, IL-10 and TGFÎČ, and significantly elevate the levels of IFNÎł and IL-12, cytokines required for control of the disease. Mice treated with KALSOMEℱ10 showed elevated levels of IFNÎł and suppressed IL-10 secretion from both CD4+ and CD8+ subsets of T cells, as well as from culture supernatants of splenocytes, compared to that of normal, AmB and AmBisome treated animal Treatment of infected mice with 7.5 mg/kg double dose of KALSOMEℱ10 was safe and effective in clearing the parasites from the sites of infection. The drug maintains the inherent immunomodulatory activities of AmB by effectively suppressing disease promoting cytokines IL-10 and TGFÎČ, thereby boosting IL-12 and IFNÎł levels. This emphasizes KALSOMEℱ10 as a promising drug alternative for lifelong protection from VL

    Population Based Model of Human Embryonic Stem Cell (hESC) Differentiation during Endoderm Induction

    Get PDF
    The mechanisms by which human embryonic stem cells (hESC) differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2) and bone morphogenetic protein 4 (BMP4)). The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable either to a system of adult stem cells or later stages of ESC differentiation

    A survey of Post-Traumatic Stress Disorder, Anxiety and Depression among Flood Affected Populations in Kerala, India

    Get PDF
    Background: Globally, post traumatic stress disorder (PTSD) is one of the most common psychiatric illnesses following a disaster. We aimed to evaluate the relationship between the socio-economic and flood exposure factors with PTSD, depression and anxiety among the flood-affected populations in Kerala, India. Methods: A cross-sectional household survey was conducted from November 2019 to January 2020 in Kozhikode district of Kerala, India. Adults (≄ 18 years), who were permanent residents and had been directly exposed to the flood, were invited to take part in the study. Individuals with a history of mental health issues and those who had other stressful situations in the past were excluded. The survey questionnaire was based on three screening tools: (1) PTSD Checklist for DSM-5 (PCL-5); (2) patient health questionnaire (PHQ-9); and (3) generalized anxiety disorder (GAD-7). Data included sociodemographic factors and flood exposure variables. The primary outcome variable was psychiatric morbidity (PTSD, anxiety and depression). Results: A total of 276 respondents (150 males/126 females) participated in the study. A significant correlation was observed between total score on PCL-5 and GAD-7 (r=0.339, p=0.001) and PHQ-9 (r=0.262, p=0.001). Females had significantly higher total PTSD symptom severity scores (8.24±5.88 vs. 6.07±5.22; p=0.001), severity of symptoms of intrusion (4.66±3.60 vs. 3.69±3.20; p=0.04), increased level of anxiety (2.54±1.94 vs. 1.79±1.53; p=0.001) and depression (3.02±2.26 vs. 2.04±1.67; p=0.001) compared to males. However, the gender difference for PTSD symptoms disappeared when controlling for age. Conclusion: The findings of this survey revealed that the vast majority of respondents (92 percent females and 87 percent males) still had subclinical psychiatric symptoms one year after the flood. Therefore, tailored psychological interventions are warranted to counter the long-lasting impact of flooding on the mental health of individuals

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    Initial evidence that non-clinical autistic traits are associated with lower income

    Get PDF
    Among non-clinical samples, autistic traits correlate with a range of educational and social outcomes. However, previous work has not investigated the relationship between autistic traits and income, a key determinant of socio-economic status and wellbeing. In 5 studies (total N = 2491), we recruited participants without a diagnosis of autism from the general US population via an on-line platform, and administered the short-form Autism Spectrum Quotient (AQ) as well as asking a range of demographic questions. We found a negative association between AQ and household income, which remained robust after controlling for age, gender, education, employment status, ethnicity, and socially-desirable responding. The effect was primarily driven by the participant’s own income, and was mainly due to the social subscale of the AQ. These results provide initial evidence that income is negatively related to autistic traits among the general population, with potential implications for a range of social, psychological, and health outcomes.WJS was supported by Wellcome Trust grant RG76641 and Isaac Newton Trust grant RG70368. SBC was supported by the Autism Research Trust

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    • 

    corecore