74 research outputs found

    pH control of conductance in a pyrazolyl Langmuir–Blodgett monolayer

    Get PDF
    In this contribution pyrazole is identified as an excellent anchor group that forms high quality films under pH controlled conditions, allowing the modulation of the electrical properties with a more efficient electronic coupling in basic conditions.</p

    Chronic kidney disease in the type 2 diabetic patients: prevalence and associated variables in a random sample of 2642 patients of a Mediterranean area

    Get PDF
    Background: Kidney disease is associated with an increased total mortality and cardiovascular morbimortality in the general population and in patients with Type 2 diabetes. The aim of this study is to determine the prevalence of kidney disease and different types of renal disease in patients with type 2 diabetes (T2DM). Methods: Cross-sectional study in a random sample of 2,642 T2DM patients cared for in primary care during 2007. Studied variables: demographic and clinical characteristics, pharmacological treatments and T2DM complications (diabetic foot, retinopathy, coronary heart disease and stroke). Variables of renal function were defined as follows: 1) Microalbuminuria: albumin excretion rate & 30 mg/g or 3.5 mg/mmol, 2) Macroalbuminuria: albumin excretion rate & 300 mg/g or 35 mg/mmol, 3) Kidney disease (KD): glomerular filtration rate according to Modification of Diet in Renal Disease < 60 ml/min/1.73 m2 and/or the presence of albuminuria, 4) Renal impairment (RI): glomerular filtration rate < 60 ml/min/1.73 m2, 5) Nonalbuminuric RI: glomerular filtration rate < 60 ml/min/1.73 m2 without albuminuria and, 5) Diabetic nephropathy (DN): macroalbuminuria or microalbuminuria plus diabetic retinopathy. Results: The prevalence of different types of renal disease in patients was: 34.1% KD, 22.9% RI, 19.5% albuminuria and 16.4% diabetic nephropathy (DN). The prevalence of albuminuria without RI (13.5%) and nonalbuminuric RI (14.7%) was similar. After adjusting per age, BMI, cholesterol, blood pressure and macrovascular disease, RI was significantly associated with the female gender (OR 2.20; CI 95% 1.86-2.59), microvascular disease (OR 2.14; CI 95% 1.8-2.54) and insulin treatment (OR 1.82; CI 95% 1.39-2.38), and inversely associated with HbA1c (OR 0.85 for every 1% increase; CI 95% 0.80-0.91). Albuminuria without RI was inversely associated with the female gender (OR 0.27; CI 95% 0.21-0.35), duration of diabetes (OR 0.94 per year; CI 95% 0.91-0.97) and directly associated with HbA1c (OR 1.19 for every 1% increase; CI 95% 1.09-1.3). Conclusions: One-third of the sample population in this study has KD. The presence or absence of albuminuria identifies two subgroups with different characteristics related to gender, the duration of diabetes and metabolic status of the patient. It is important to determine both albuminuria and GFR estimation to diagnose KD

    A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)

    Get PDF
    Coastal regions are the areas most threatened by natural hazards, with floods being the most frequent and significant threat in terms of their induced impacts, and therefore, any management scheme requires their evaluation. In coastal areas, flooding is a hazard associated with various processes acting at different scales: coastal storms, flash floods, and sea level rise (SLR). In order to address the problem as a whole, this study presents a methodology to undertake a preliminary integrated risk assessment that determines the magnitude of the different flood processes (flash flood, marine storm, SLR) and their associated consequences, taking into account their temporal and spatial scales. The risk is quantified using specific indicators to assess the magnitude of the hazard (for each component) and the consequences in a common scale. This allows for a robust comparison of the spatial risk distribution along the coast in order to identify both the areas at greatest risk and the risk components that have the greatest impact. This methodology is applied on the Maresme coast (NW Mediterranean, Spain), which can be considered representative of developed areas of the Spanish Mediterranean coast. The results obtained characterise this coastline as an area of relatively low overall risk, although some hot spots have been identified with high-risk values, with flash flooding being the principal risk process

    The Role of Oligomerization and Cooperative Regulation in Protein Function: The Case of Tryptophan Synthase

    Get PDF
    The oligomerization/co-localization of protein complexes and their cooperative regulation in protein function is a key feature in many biological systems. The synergistic regulation in different subunits often enhances the functional properties of the multi-enzyme complex. The present study used molecular dynamics and Brownian dynamics simulations to study the effects of allostery, oligomerization and intermediate channeling on enhancing the protein function of tryptophan synthase (TRPS). TRPS uses a set of α/β–dimeric units to catalyze the last two steps of L-tryptophan biosynthesis, and the rate is remarkably slower in the isolated monomers. Our work shows that without their binding partner, the isolated monomers are stable and more rigid. The substrates can form fairly stable interactions with the protein in both forms when the protein reaches the final ligand–bound conformations. Our simulations also revealed that the α/β–dimeric unit stabilizes the substrate–protein conformation in the ligand binding process, which lowers the conformation transition barrier and helps the protein conformations shift from an open/inactive form to a closed/active form. Brownian dynamics simulations with a coarse-grained model illustrate how protein conformations affect substrate channeling. The results highlight the complex roles of protein oligomerization and the fine balance between rigidity and dynamics in protein function

    Randomized trial of thymectomy in myasthenia gravis

    Get PDF

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
    corecore