140 research outputs found
Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets
<div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3â38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div
6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) controls metabolic flux through allosteric regulation of glycolysis. Here we show that p53 regulates the expression of PFKFB4 and that p53-deficient cancer cells are highly dependent on the function of this enzyme. We found that p53 downregulates PFKFB4 expression by binding to its promoter and mediating transcriptional repression via histone deacetylases. Depletion of PFKFB4 from p53-deficient cancer cells increased levels of the allosteric regulator fructose-2,6-bisphosphate, leading to increased glycolytic activity but decreased routing of metabolites through the oxidative arm of the pentose-phosphate pathway. PFKFB4 was also required to support the synthesis and regeneration of nicotinamide adenine dinucleotide phosphate (NADPH) in p53-deficient cancer cells. Moreover, depletion of PFKFB4-attenuated cellular biosynthetic activity and resulted in the accumulation of reactive oxygen species and cell death in the absence of p53. Finally, silencing of PFKFB4-induced apoptosis in p53-deficient cancer cells in vivo and interfered with tumour growth. These results demonstrate that PFKFB4 is essential to support anabolic metabolism in p53-deficient cancer cells and suggest that inhibition of PFKFB4 could be an effective strategy for cancer treatment.Cancer Research UK; German Cancer Aid (grant 111917); German Research Foundation (FOR 2314); CRUK-EPSRC Imaging Centre in Cambridge and Manchester (grant 16465
Structure-Based Development of Small Molecule PFKFB3 Inhibitors: A Framework for Potential Cancer Therapeutic Agents Targeting the Warburg Effect
Cancer cells adopt glycolysis as the major source of metabolic energy production for fast cell growth. The HIF-1-induced PFKFB3 plays a key role in this adaptation by elevating the concentration of Fru-2,6-BP, the most potent glycolysis stimulator. As this metabolic conversion has been suggested to be a hallmark of cancer, PFKFB3 has emerged as a novel target for cancer chemotherapy. Here, we report that a small molecular inhibitor, N4A, was identified as an initial lead compound for PFKFB3 inhibitor with therapeutic potential. In an attempt to improve its potency, we determined the crystal structure of the PFKFB3âąN4A complex to 2.4 Ă
resolution and, exploiting the resulting molecular information, attained the more potent YN1. When tested on cultured cancer cells, both N4A and YN1 inhibited PFKFB3, suppressing the Fru-2,6-BP level, which in turn suppressed glycolysis and, ultimately, led to cell death. This study validates PFKFB3 as a target for new cancer therapies and provides a framework for future development efforts
Phylogeny of the Infraorder Pentatomomorpha Based on Fossil and Extant Morphology, with Description of a New Fossil Family from China
<div><h3>Background</h3><p>An extinct new family of Pentatomomorpha, Venicoridae Yao, Ren & Cai <b>fam. nov.</b>, with 2 new genera and 2 new species (<em>Venicoris solaris</em> Yao, Ren & Rider <b>gen. & sp. nov.</b> and <em>Clavaticoris zhengi</em> Yao, Ren & Cai <b>gen. & sp. nov.</b>) are described from the Early Cretaceous Yixian Formation in Northeast China.</p> <h3>Methodology/Principal Findings</h3><p>A cladistic analysis based on a combination of fossil and extant morphological characters clarified the phylogenetic status of the new family and has allowed the reconstruction of intersuperfamily and interfamily relationships within the Infraorder Pentatomomorpha. The fossil record and diversity of Pentatomomorpha during the Mesozoic is discussed.</p> <h3>Conclusions/Significance</h3><p>Pentatomomorpha is a monophyletic group; Aradoidea and the Trichophora are sister groups; these fossils belong to new family, treated as the sister group of remainder of Trichophora; Pentatomoidea is a monophyletic group; Piesmatidae should be separated as a superfamily, Piesmatoidea. Origin time of Pentatomomorpha should be tracked back to the Middle or Early Triassic.</p> </div
Metabolic alterations during the growth of tumour spheroids
Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms
Metabolic alterations during the growth of tumour spheroids
Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms
Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species
Background: The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. Results: To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. Conclusions: Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution
Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications
Endogenous damage-associated molecular patterns (DAMPs) are released during tissue damage and have increasingly recognized roles in the etiology of many human diseases. The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohnâs disease (CD), are immune-mediated conditions where high levels of DAMPs are observed. DAMPs such as calprotectin (S100A8/9) have an established clinical role as a biomarker in IBD. In this review, we use IBD as an archetypal common chronic inflammatory disease to focus on the conceptual and evidential importance of DAMPs in pathogenesis and why DAMPs represent an entirely new class of targets for clinical translation. </p
- âŠ