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Abstract 

Endogenous damage associated molecular patterns (DAMPs) are released during tissue 

damage and have increasingly recognized roles in the etiology of many human diseases. 

The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD) are 

immune-mediated conditions where high levels of DAMPs are observed. DAMPs such as 

calprotectin (S100A8/9) have an established clinical role as a biomarker in IBD. In this 

review, we use IBD as an archetypal common chronic inflammatory disease to focus on the 

conceptual and evidential importance of DAMPs in pathogenesis and why DAMPs represent 

an entirely new class of targets for clinical translation. 

 

Introduction 

The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD) 

affect an estimated 4 million people in the United States and Europe and have a rising 

incidence in the developing world 1-4. Both conditions are incurable, often diagnosed at a 

young age and are associated with significant morbidity and socio-economic costs 5 6. UC is 

characterized by confluent superficial inflammation affecting only the colon; in CD, deep 

patchy ulcerations can affect any part of the gastrointestinal tract. In UC, 15% will develop 

acute severe colitis where the failure rate of medical therapy is high (~30% requiring surgical 

removal of the colon)7. In CD, most patients will encounter a disabling disease course and 

approximately half will require surgery within 10 years of diagnosis 8, 9.  

 

The last decade has seen remarkable progress in understanding the pathogenesis of IBD 

with notable advances in the contribution of genetic susceptibility, microbial flora and 

environmental factors 4, 10-12. There are clear differences between UC and CD (Box 1). 

However, failure to resolve mucosal inflammation (which commonly re-activates upon 

withdrawal of anti-inflammatory treatments such as glucocorticoids) is a notable shared 

clinical feature. Complete mucosal healing, the strongest predictive factor for long lasting 

remission, is difficult to achieve. Here, we review the relatively underexplored but potentially 
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critical contribution of immunogenic endogenous ‘damage associated molecular patterns’ 

(DAMPs) as distinct stimuli, which maintain the state of abnormal mucosal inflammation in 

IBD. We focus on their roles in initiating, perpetuating and amplifying inflammation in IBD 

and cover key areas namely: (1) DAMPs implicated in IBD; (2) their roles in modulating the 

abnormal inflammatory response; (3) factors governing specific DAMP release and finally (4) 

why DAMPs represent attractive targets for clinical translation in IBD.  

 

DAMPs: alerting the host to danger and promoting inflammation 

The inflammatory response is an essential component of host defense, primarily ensuring 

containment and clearance of pathogens. This sentinel function of the innate immune 

system rapidly and precisely distinguishes between ‘self’ and ‘non-self’ by recognizing 

microbial invariant molecular patterns (pattern associated molecular patterns, PAMPs) 

through a system of germline encoded pattern recognition receptors (PRRs) 13. In main, 

PRR activation leads to intracellular signaling cascades, transcriptional upregulation of 

inflammatory genes, production of proinflammatory cytokines, chemokines and type I 

interferons (IFN), and recruitment of inflammatory cells such as neutrophils.  

 

Similar strong immune responses are seen in the absence of invasive pathogens (‘sterile 

inflammation’) such as in autoimmunity, trauma and ischemia. This phenomenon is 

explained by Matzinger’s ‘danger hypothesis’ in which immune responses are geared 

towards recognizing danger whether these signals arise endogenously or exogenously 14. In 

this context, PRRs are activated by both non-self (PAMPs) as well as endogenous 

molecules released at times of danger to the host (DAMPs) 15-17 (Figure 1). The major 

classes of PRRs are cell surface or endosomal toll-like receptors (TLRs), cytoplasmic 

nucleotide binding and oligomerisation domain (NOD) like receptors (NLRs) and 

inflammasomes, C-type leptin receptors, RIG-1 like receptors (RLR) and absence in 

melanoma 2 (AIM2)-like receptors 18, 19. In addition, the more DAMP-specific receptor for 

advanced glycation end-products (RAGE) is also a categorized as a PRR 20, 21.  
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DAMPs comprise of structurally diverse non-pathogen derived molecules that share a 

number of characteristics: (1) they bind to and activate PRRs; (2) are passively leaked after 

plasma membrane rupture following various forms of cell death including necrosis, 

necroptosis and secondary necrosis; (3) may be actively secreted by stressed cells via non-

classical pathways independent of the endoplasmic reticulum (ER)/Golgi apparatus; and (4) 

may change from a physiological to a proinflammatory function when released into the 

extracellular milieu 22. Extracellular DAMPs may activate cell surface PRRs or intracellular 

PRRs after phagocytosis, endocytosis or other mechanisms of internalization 23. DAMPs 

may originate from any compartment of stressed cells and include intracellular proteins, 

extracellular matrix (ECM) derived proteins and purinergic molecules. The list of recognized 

DAMPs is growing rapidly – a list of putative DAMPs and their receptors is provided in Table 

1 (references provided in Supplementary Table 1). 

 

DAMPs in acute and chronic inflammation 

Under physiological conditions, DAMPs reside intracellularly or are sequestered in the ECM 

and are thus hidden from recognition by innate immune cells bearing PRRs. In response to 

perceived danger such as tissue damage, DAMPs are liberated extracellularly serving to 

signal danger to the host, promoting inflammation and repair processes that are initially 

beneficial and protective 23. However, in the setting of significant and persistent DAMP 

release, their downstream effects may result in deleterious ‘collateral damage’ and therefore 

have a central role in disease pathogenesis. The clearest example is in acute gout, where 

uric acid crystals directly trigger the NLRP3 inflammasome leading to overwhelming 

inflammation and if uncontrolled, joint destruction 24.  

 

The role of DAMPs has been explored in disease models using direct administration of 

purified or recombinant DAMPs and/or depletion via antagonists or antibodies 25. DAMP 

genetic knockout (KO) studies have limitations as they are unable to discriminate between 
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the physiological intracellular and proinflammatory extracellular functions of DAMPs. In the 

first study to demonstrate how DAMP administration can cause inflammation in vivo, 

Johnson et al. observed a systemic inflammatory response syndrome (SIRS)-like response 

after administration of the DAMP soluble heparan sulfate 26. Systemic administration of a 

recombinant form of the DAMP high-mobility group box 1 protein (HMGB1) in mice is lethal 

27, with gut epithelial barrier dysfunction being a notable feature 28. In a study of trauma 

patients, mitochondrial DAMPs released at the time of injury led to SIRS mediated via TLR9 

and formyl peptide receptor-1 (FPR1) activation 29. In sepsis, initial PAMP mediated cellular 

damage may lead to further DAMP release and subsequent DAMP-PRR inflammatory 

signaling.  In a study of illustrating this concept, lethal anthrax challenge in baboons was 

associated with only transiently elevated bacterial DNA whilst mitochondrial DAMP levels 

remained elevated until death 30. When DAMP release was indirectly suppressed by 

activated protein C treatment in this study, an increased rate of survival was noted. This 

suggests that endogenous DAMPs may potentiate disease severity in conditions where 

PAMPs have an initial triggering role. 

 

Levels of DAMPs are increased in IBD 

Although the importance of DAMPs in acute inflammation is well documented, their precise 

role in chronic inflammatory diseases is less clear. High levels of various DAMPs have been 

observed in active inflammatory autoimmune, skin, cardiovascular, renal, allergic and 

metabolic conditions 31-36. In IBD, the chronic and extensively inflamed gut mucosa 

represents an enriched source of local and systemic DAMPs. It rationally follows and 

unsurprisingly, several DAMPs are found in abundance during active disease in IBD 

including the S100A calgranulins (S100A8/9 complex or calgranulin A/B or MRP8/14 or 

calprotectin; and S100A12), HMGB1 and interleukin-1α/33 (IL-1α and IL-33). The latter 

group DAMPs are regarded as ‘alarmins’ 37, molecules that possess cytokine-like functions, 

which are stored in cells and released upon uncontrolled cell death.  
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It is salutary to note that the use of DAMPs as biomarkers in IBD is established. Fecal 

calprotectin testing has revolutionized IBD clinical practice with roles in differentiating IBD 

from functional gut disorders 38-40; as a marker of disease activity 41 and to predict 

subsequent course of disease 42. Calprotectin is now also a measurable outcome in current 

clinical IBD therapeutic trials. Calprotectin is a major cytosolic protein found in neutrophils 

and other inflammatory cells and is released by stressed cells during intestinal inflammation. 

Elevated serum and/or plasma levels of calprotectin have been found in numerous 

inflammatory diseases including IBD43, psoriasis 44, vasculitis 45 and rheumatoid arthritis46, 47. 

Lactoferrin, a marker of neutrophil degranulation which acts as an alarmin 48, is also 

detectable in the stool and can be used to differentiate IBD from functional disorders 49. High 

levels of serum and fecal S100A12 is found in active IBD, although existing studies are 

limited by size and most relate to the pediatric cohort 50-56. Similarly, fecal HMGB1 is raised in 

intestinal inflammation associated with IBD 57, 58. Serum 59, 60 and mucosa epithelial-derived 

IL-33 expressions are increased in active IBD 59-64; high levels of IL-1α are found in cultured 

colonic biopsies 65 and lamina propria mononuclear cells 66 of IBD patients. A 

comprehensive list of DAMPs implicated in IBD and experimental colitis is provided in Table 

2 although it is noteworthy that many DAMPs have yet to be studied in the context of 

intestinal inflammation.  

 

The functional consequence of DAMP release in IBD 

Direct pro-inflammatory role of DAMPs 

PRR signaling and activation of downstream transcription factors such as NF-κB is essential 

to maintain intestinal mucosal host defense and barrier function 11, 67. However, excessive or 

persistent PRR signaling can result in chronic intestinal inflammation, when this balance is 

lost 11. Despite their structural heterogeneity, PAMPs and DAMPs are often recognized by 

the same PRRs although the structural biology underlying DAMP-PRR interaction remains 

poorly understood. As evident in the examples below, it is an oversimplification to suggest 
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that all gut released DAMPs are pro-inflammatory. In general, the nature and extent of the 

inflammatory response after DAMP-PRR interaction is likely to depend on the setting and the 

specific DAMP(s) involved. 

 

HMGB1, the prototypic DAMP, provides a model of the impact of DAMPs when released 

after injury. HMGB1 is an abundant nuclear chromatin-binding protein expressed in almost 

all cell types 68 . Once extracellular, HMGB1 can bind to one of several PRRs including 

RAGE, TLR2, TLR4 and TLR9 69-72 or form complexes with DNA, lipopolysaccharide, 

cytokines or lipids 73. Under physiological conditions, nuclear HMGB1 binds double-stranded 

DNA and facilitates chromatin bending which supports gene transcription 74. HMGB1 

translocates to the cytoplasm in response to cellular stress; cytoplasmic, but not nuclear 

HMGB1 expression is significantly enhanced in the biopsies of inflamed gut tissues 57. 

Passive release of cytoplasmic HMGB1 occurs after necrosis and associated loss of cell 

membrane integrity. Active extracellular secretion of HMGB1 may occur by a variety of 

immune cells (predominantly macrophages and monocytes but also natural killer (NK) cells, 

dendritic cells (DCs), neutrophils, eosinophils and platelets) in response to plasma 

membrane receptor activation by extracellular components such as lipopolysaccharide and 

proinflammatory cytokines, endogenous inflammatory stimuli or apoptotic cells 27, 74, 75.  

 

In intestinal inflammation, high HMGB1 levels are found in the feces 58, 76, 77 and serum 78. In 

dextran-sulfate sodium (DSS) colitis, cytoplasmic expression of epithelial and macrophage 

HMGB1 are associated with areas of necrosis, indicating translocation from its physiological 

nuclear compartment 78. Inhibition of HMGB1 appears to be protective in acute DSS colitis 76, 

78. Constitutive deletion of HMGB1 is not compatible with survival 79. Of interest however, gut 

epithelial specific HMGB1-KOs exacerbates DSS colitis, highlighting the additional 

physiological role of intracellular HMGB1 80. Other tissue specific conditional KO of HMGB1 

have found conflicting survival outcomes, underlining its divergent intracellular and 

extracellular roles 81-84. Here myeloid-, hepatocyte- or pancreas-specific KO of HMGB1 did 
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not ameliorate but instead exacerbated lipopolysaccharide- or injury-induced damage and 

inflammation. This again may reflect on HMGB1’s homeostatic role in maintaining the 

genome and cell survival, and preventing histone release. 

 

Calprotectin, the most clinically relevant DAMP in IBD, is primarily expressed in neutrophils 

and macrophages with intracellular functions including calcium binding, regulation of 

microtubules and modulation of the cytoskeleton 85. Like HMGB1, calprotectin may be 

passively released extracellularly after cellular rupture or actively secreted by inflamed 

endothelium-primed phagocytes 47. Calprotectin can bind to TLR4, RAGE and surface 

heparan sulfate proteoglycan and carboxylated N-glycans on endothelial cells, resulting in 

downstream NF-κB activation 86-88. In certain vasculitides, the sites of inflammation are 

characterized by infiltration of leukocytes 45, higher overall circulating serum calprotectin 

levels and higher cell surface calprotectin expression on macrophages 89. 

 

The case for calprotectin as a strictly pro-inflammatory DAMP appears more complex as it 

also functions as an antimicrobial protein 90. In this study, the name ‘calprotectin’ was first 

suggested due to its calcium binding properties and the finding that the protein inhibited the 

growth of various fungi and bacteria. Furthermore, when liberated in high quantities in the 

feces, calprotectin sequesters essential micronutrients metals such as zinc, thereby limiting 

their availability to microbes, a process termed nutritional immunity 91. During the release of 

calprotectin following uncontrolled cell death, human neutrophils also contain high 

concentrations of anti-inflammatory defensins 92. Furthermore, extracellular traps produced 

by dying neutrophils sequester calprotectin which may limit its pro-inflammatory effect 93. 

Most biomarker studies in IBD have focused on fecal calprotectin. As will be discussed later, 

calprotectin released into the local and systemic circulation may have different functional 

consequence to that released into the gut lumen.   
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The alarmins IL-1α and IL-33 are DAMPs implicated in IBD and experimental colitis (Table 

2). Full length IL-1α and IL-33 (pro-IL-1α and pro-IL-33) are constitutively expressed in 

resting cells, including epithelial cells, under normal conditions and retain intracellular 

function as transcription factors 94, 95. They do not require proteolytic processing for activity 

and can therefore exert their biological activity when released into the extracellular milieu 96-

99, a characteristic that ensures quick action at the time of initial tissue injury to act as 

effective alarm signals. IL-1α and IL-33 bind with high affinity to specific receptors of the TIR 

superfamily (IL-1 Receptor Type I [IL-1RI] for IL-1α; ST2 [also known as IL1RL1] for IL-33). 

Although these receptors are not classic PRRs, they perform PRR-like functions in 

recognizing endogenous alarmins to activate proinflammatory pathways. IL-1RI shares a 

common cytoplasmic Toll-IL-1 receptor (TIR) domain with TLRs 100; a key study showed that 

IL-1α dependent activation of IL-1R by dead cells was an important trigger of the 

inflammatory response 101. In addition, release of IL-1α induces the recruitment of 

neutrophils during sterile inflammation 102.  

 

In colitis, stressed or necrotic intestinal epithelial cells (IECs) initially release extracellular 

full-length IL-33, which engages the ST2 receptor, leading to the release of proinflammatory 

cytokines via a MyD88 dependent pathway 103. Oboki et al. found that colitis was less severe 

in IL-33-/- mice during early stages of DSS-challenge, which fits with a DAMP pattern of 

contribution to innate injury-driven colitis 103. Later, IL-33 is secreted by a variety of lamina 

propria cells in response to inflammatory cytokines 104 and can engage Th2, as well as 

Th1/Th17 immune responses 105, 106. Interestingly, in healthy colons, ST2 expression 

appears to be abundantly expressed in colonic epithelial cells whereas this expression is lost 

during inflammation, at which time it is upregulated in the lamina propria 60. Hence, the 

picture is different in chronic inflammatory settings (to be discussed later). This pathway is 

clinically relevant to IBD as Latiano et al. found a significant association between IL-33/ST2 

SNPs with both UC and CD, implicating IL-33 as a novel IBD susceptibility gene 107. In the 

case of IL-1α, high levels of mRNA are detectable early in the course of immune complex 
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induced colitis in rabbits with a high degree of correlation with necrosis and inflammation 108. 

Bersudsky et al. recently used IL-1α deficient mice and neutralization experiments to show 

that IEC-derived IL-1α initiates and propagates DSS colitis 109, raising the possibility that IL-

1α acting as a DAMP has an important triggering role early in IBD associated inflammation.  

 

DAMP-pathways in IBD 

Some aspects of PRR signaling relevant to IBD may be at least partially DAMP-specific. One 

such example is activation of the receptor for advanced glycation end products (RAGE), a 

member of the immunoglobulin superfamily of cell surface molecules which recognizes a 

variety of ligands including HMGB1, S100 proteins, advanced glycation end products 

(AGEs), B2 integrins, amyloid ß and amyloid fibrils but not PAMPs 110. RAGE expression is 

upregulated when its ligands are abundant 111; it follows that RAGE expression is increased 

in inflamed CD gut tissue where high levels of its ligands has been demonstrated 112, 113. 

Several studies have shown a major role for neutrophil recruitment and migration 81, 112, 114. 

Huebener et al. recently suggested that HMGB1 activating RAGE may have a dominant role 

in this context81. In vitro studies show that anti-RAGE antibodies inhibit neutrophil migration 

and cytokine release in intestinal epithelial cells 112, 114. In vivo administration of soluble 

RAGE (sRAGE), which acts as a decoy receptor, suppresses inflammation in IL-10 deficient 

mouse model of colitis 115. A number of small studies have attempted to correlate blood 

sRAGE levels with the presence and activity of IBD with conflicting results 55 116 117 118 119.  

 

In addition to RAGE, DAMP regulatory pathways may play a role in IBD. The triggering 

receptor expressed on myeloid cells 1 (TREM-1) is an immunoglobulin present on 

monocytes and neutrophils which upregulates DAMP-PRR mediated signaling 120. TREM-1 

expression is upregulated in IBD and expression correlates with endoscopic assessment of 

disease activity 121. Furthermore, TREM-1 blockade with small molecules attenuates mouse 

DSS-colitis 122. In an in vitro study, TREM-1 inhibition with a recombinant chimeric protein 

attenuated the HMGB1 and heat shock protein 70 induced proinflammatory response 120. In 
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contrast to the upregulating effects of TREM-1, CD24-Siglec signaling (Siglec-G in mice; 

Siglec-10 in humans) has been shown to suppress DAMP, but not PAMP, related 

inflammation 123. Siglecs (sialic acid-binding immunoglobulin-like lectins) are members of the 

Ig superfamily that bind with CD24 and selectively repress DAMP mediated inflammation, 

possibly via phosphatases acting on PRRs 124.  CD24-Siglec signaling has an anti-

inflammatory role in models of acetaminophen related hepatic injury 123 and sepsis 125, but 

has not yet been investigated in vivo in colitis.  

 

Modulation of the adaptive immune response 

Beyond simply behaving as immunogenic molecules for the innate immune system, DAMPs 

have an increasingly recognized role as adjuvants, directly or indirectly interacting with the 

adaptive immune system. In IBD, the inflammatory milieu enriched with DAMPs is fertile 

ground for shaping adaptive immune responses. In general, and consistent with Matzinger’s 

danger hypothesis, necrotic cells appear to activate dendritic cells and augment the 

generation of CD4+ and CD8+ T cell responses 126-128. This mechanism was postulated to 

explain how T cell responses are generated in conditions such as cancer, transplants and 

autoimmunity in the absence of microbial infection 25. Subsequently, several studies in 

related fields have provided strong evidence that DAMPs have effects on T-cell function and 

are capable of modulating antigen presenting cell (APC)-T cell interaction. A number of 

DAMPs including HMGB1 129-131, heat shock proteins (HSPs) 60 132 and 70 133, 134 appear to 

assist with T cell priming by indirect stimulation of DC maturation. Genomic DNA and uric 

acid released by necrotic cells also have a similar effect 135, 136.  Furthermore, culture of DCs 

in the presence of HMGB1 137 or HSP60 132 result in a Th1 type cytokine response, 

demonstrating a role for DAMPs in driving particular adaptive immune responses.  

 

DAMPs have been shown to act as adjuvants promoting antigen-specific T cell responses. 

After coinjection with antigen in vivo, uric acid enhanced CD8+ T cell responses and uric acid 

depletion led to reduced adjuvant activity 136, 138 .Vaccination with hyaluronan as an adjuvant 
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leads to increased cytokine responses in mice after antigen rechallenge 139. Similarly, 

lactoferrin augments the efficacy of the BCG vaccine through the generation of a T helper 

response 140 and defensins promote T cell-dependent cellular immunity and antigen-specific 

Ig production in mice 141. The evolutionary basis of this as a protective mechanism against 

microbes is clear. However, in the context of exacerbated T-cell responses such as in IBD, 

this adjuvant role of DAMPs may in fact be harmful. This hypothesis has not yet been fully 

investigated. In a different setting, DAMP release from dying cancer cells has received 

considerable recent attention due to the possibility of DAMP-mediated activation of anti-

tumourigenic T cell immunity with implications for immunotherapy 142.  

 

Calprotectin is important for the induction of autoreactive CD8+ T cells and the development 

of systemic autoimmunity 143. In a T-cell mediated autoimmune mouse model of transgenic 

mice overexpressing the CD40 ligand (CD40lg), Loser et al. found that disease onset and 

severity was delayed and reduced respectively when Mrp14 was deleted. The authors 

suggested that Mrp8/14 functions as a TLR4 ligand on auto-reactive CD8+ T cells that 

upregulate IL-17 expression and induce autoimmunity in mice and humans. This has yet to 

be studied in detail in mouse colitis models and maybe more complex when considered in 

different disease settings. For example, in a T-cell mediated model of allergic contact 

dermatitis, Mrp 14 deletion led to more severe disease 144. Here, it is suggested that loss of 

Mrp8 and 14 resulted in enhanced DC differentiation and antigen presentation accounted for 

this finding.  

 

More recently, Schiering et al. showed that IL-33 also has an immunoregulatory role in the 

intestine, where it enhances TGF-β mediated differentiation of T-regulatory (Treg) cells and 

provides the necessary signal for Treg accumulation in inflamed mucosa 145. Here, ST2 

appears to be preferentially expressed on colonic Treg cells. IL-23, an important pro-

inflammatory cytokine in IBD is shown to limit IL-33 effect. Hence in this context, IL-33 plays 

an anti-inflammatory role; as discussed earlier, the role of IL-33 and indeed for DAMPs in 
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general, is likely to be context dependent and in this instance, dependent on the stage of 

colitis. This is further supported by the finding that IL-33, when administered to DSS-treated 

mice, led to an aggravation of acute colitis but a significant improvement in chronic colitis 146.  

 

DAMPs and epithelial barrier function 

Intestinal epithelial dysfunction has an important contributory role in IBD where disruption of 

any components of this strategic barrier can lead to pathogenic interaction between luminal 

contents and resident immune cells within the underlying lamina propria 147, 148. A number of 

studies show how DAMPs can affect epithelial barrier function 28, 149, 150. Several mechanisms 

have been proposed: IL-33 administration impairs epithelial barrier in experimental colitis 149; 

HMGB1 has similar effects via an inducible nitric oxide synthase dependent pathway in mice 

28; and calprotectin causes epithelial barrier dysfunction in endothelial cells by engaging 

TLR4 and RAGE thereon influencing the endothelial cytoskeleton and tight junction proteins 

151. The effects of HMGB1 may be potentiated via an autocrine feedback loop in 

immunostimulated enterocytes, which further release HMGB1 152. Anti-HMGB1 neutralizing 

antibodies ameliorate gut barrier dysfunction in a hemorrhagic shock model 150. In humans, 

calprotectin and S100A12 from biopsies of active IBD areas upregulated adhesion 

molecules and chemokines in normal colonic endothelial cells in vitro 153.  Furthermore, 

calprotectin increases vascular permeability via down-regulation of cell junction associated 

proteins and subsequent effects on endothelial monolayer integrity 154.  

 

Although activation of the inflammasomes by DAMPs is strongly pro-inflammatory 155, 

inflammasome activation also has important effects on epithelial barrier homeostasis. Like 

TLR activation, IL-18 has a compartmentalized effect on the epithelium. Upon activation 

within IECs, IL-18 induces IEC proliferation and regeneration whilst its effect via lamina 

propria resident immune cells aggravate gut barrier dysfunction through production of 

proinflammatory mediators and chemoattractants 156. Several studies show that mice 

deficient in NLRP3 are highly susceptible to gut epithelial injurious stimuli and death 157-159. 
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Furthermore NLRP6 inflammasome regulates colonic mucus production and microbiota, 

which are key components to maintain epithelial health 160, 161.  

 

Mechanisms regulating DAMP activity and clearance relevant to IBD 

As discussed, current evidence suggests the load and composition of DAMPs may 

determine whether their effects become pathogenic, hence re-emphasizing the delicate 

balance between the protective and pathologic roles of DAMPs. Here we further review the 

different factors that may influence this balance in the context of IBD. 

 

The manner of cell death affects DAMP release 

In health, the intestinal epithelium is replaced every 5-7 days; epithelial cells are either shed 

or die by apoptosis. In active IBD, non-apoptotic cell death, for example epithelial necrosis 

occurs more commonly 162.  More recently, necroptosis or programmed necrosis is 

increasingly appreciated as an alternative mechanism 163 which appears to contribute to 

intestinal inflammation similar to that found in IBD 164, 165. The factors that determine whether 

a cell commits to necroptosis as opposed to apoptosis are complex and not yet fully 

understood 166. A key step in necroptosis is caspase-8 inhibition, which results in RIPK1 and 

RIPK3 accumulation, phosphorylation and RIPK1/RIPK3 complex IIb (‘necrosome’) 

assembly 167, 168. Necrosome formation leads to RIPK3 dependent phosphorylation of mixed-

lineage kinase domain-like protein (MLKL) 169 which promotes an orderly form of necrotic cell 

death district from caspase-dependent apoptosis. RIPK1 also appears to have a kinase-

independent role in regulating intestinal homeostasis where IEC-specific RIPK1 KO mice 

develop severe intestinal inflammation associated with IEC apoptosis 170, 171. Necrostatins 

such as necrostatin-1 (Nec-1) inhibit necroptosis through inhibition of RIPK1 and have been 

used to investigate the functional role of necroptosis in animal models 172.  

 

Of interest, relevant KO mouse models suggest a role for necroptosis in IBD 164, 165, 173. IEC-

specific FADD KO 164 results in spontaneous enteritis/colitis and IEC-specific caspase-8 KO 
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165 leads to reduced goblet cells, terminal ileum inflammation and increased susceptibility to 

colitis. Intriguingly, both these necroptosis models exhibited Paneth cell depletion which is a 

feature of IBD; Paneth cells have an important role in the maintenance of epithelial barrier 

function including secretion of antimicrobial peptides. Furthermore, acute systemic deletion 

of caspase-8 (tamoxifen induced-Cre recombinase in floxed caspase-8) resulted in marked 

weight loss and lethality, with a predominant picture of gut enterocyte death and 

inflammation 173. Both FADD and caspase-8 KO is rescued by RIPK3 ablation 164, 173. These 

findings collectively show that that IEC necroptosis is a major factor that can trigger gut 

inflammation. It remains possible that these clinical phenotypes are primarily driven by loss 

of barrier and specialized enterocyte function (Paneth cells in this case) rather than mucosal 

DAMP release. Some limited evidence in human studies links necroptosis to IBD. Paneth 

cell loss in ileal biopsies is triggered by TNF but Nec-1 reversed this phenomenon 165, 174. 

High levels of RIPK3, MLKL and lower caspase-8 are observed in IBD intestinal biopsies 174; 

in CD, increased necroptosis and decreased Paneth cell numbers are observed in affected 

ileal sections 165.  

 

Necroptosis lacks the massive caspase activation seen in apoptosis and this leads to 

comparative DAMP activation. For example, the lack of caspase-activated DNase means 

genomic DNA is not cleaved, leading to higher molecular weight DNA with greater 

proinflammatory potential 175. Similarly, full length IL-33 is released in necroptosis compared 

to the non-immunological IL-33 in apoptosis which is due to caspase-dependent proteolysis 

98. HMGB1 is oxidized into its non-immunological form during apoptosis by caspase 

mediated reactive oxygen species (ROS) with irreversible binding to chromatin, but this does 

not occur in necroptosis 176. The DAMP-necroptosis link has been illustrated in several 

experimental models of necroptosis in skin, brain and systemic inflammation, which have 

shown higher levels of various DAMPs such as S100A9, IL-33, mitochondrial DNA (mtDNA) 

and HMGB1 163.  
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The influence of the mucosal milieu on the inflammatory properties of DAMPs 

Increased mucosal oxidative stress is another key feature of active IBD, which can enhance 

the pro-inflammatory effects of DAMPs. An oxidative milieu modifies various proteins and 

lipids such as cholesteryl ester hydroperoxides and oxidized phospholipids, activating their 

role as potent DAMPs causing further inflammation177, 178. There are several important 

examples. HMGB1 is redox sensitive and high levels of oxidative stress modulates its 

inflammatory potential 73. Purified HMGB1 only has weak proinflammatory activity 179. Low 

levels of ROS generation leads to cytosolic translocation of acetylated HMGB1 and 

autophagy assisted secretion of the reduced, all-thiol form extracellularly which has 

chemotactic but no immunostimulatory properties 180, 181. Increasing oxidative stress initially 

leads to activation of the caspase cascade and oxidation of HMGB1, which is 

immunologically inactive when released extracellularly 182. At a critical level, excessive ROS 

results in uncontrolled cell death with subsequent passive, immunologically active HMGB1 

release 73, 183. Similarly, oxidized mtDNA also becomes significantly more inflammatogenic. 

Shimada et al found that cytosolic oxidized mtDNA rather than its non-oxidised form, directly 

activates the NLRP3 inflammasome and IL-1β production 184. Pazmandi et al. further 

showed the increased immunogenicity of oxidatively modified mtDNA on plasmacytoid 

dendritic cells compared to native mtDNA 185. Other DAMPs such as calreticulin and uric 

acid have been postulated to be susceptible to oxidative stress modification due to their 

regulatory protein and anti-oxidant properties 182.  

 

De-regulation of mucosal homeostatic pathways prime the inflammatory potential of DAMPs 

Defective autophagy and the unfolded protein response (UPR) regulating ER stress are 

important in the pathogenesis of IBD 186. A meta-analysis of genome wide associated 

studies (GWASs) has identified the autophagy genes ATG16L1 and IRGM as key 

susceptibility genes particularly in CD 10. The T300A genetic mutation in ATG16L1 (a single 

nucleotide polymorphism conferring a 2-fold risk for CD) sensitizes the gene to caspase-3 

mediated degradation and consequent loss of autophagy function in response to cellular 

Page 16 of 59

Nature Publishing Group

Mucosal Immunology



For Peer Review

17 

 

stress 187. ER stress related genes have been implicated in IBD by GWAS (ORMDL3) 10 and 

candidate gene approaches (XBP1 and AGR2) 186, 188. The importance of autophagy in 

endogenous DAMP-mediated inflammation is increasingly appreciated although its role in 

the clearance of intracellular pathogens (‘xenophagy’) is established. 

 

From a DAMP perspective, failure to clear proinflammatory damaged mitochondria is a key 

consequence of defective autophagy. Dysfunctional, ROS-generating mitochondria 189 and 

specifically oxidized mtDNA 184 can activate the NLRP3 inflammasome. Other DAMPs such 

as ECM components biglycan and hyaluronic acid can additionally prime inflammasome 

activation in this context 190.  Nakahira et al. showed that defective autophagy promotes the 

accumulation of mitochondrial DAMPs leading to NLRP3 activation 155. Indeed, in ATG16L1-

deficiency there is an increased susceptibility to inflammasome mediated release of IL-1β 

and IL-18 191.  A further study showed that defective autophagy can lead to the release of 

DAMPs and subsequently contribute directly to inflammatory pathology in vivo 192. Here, Oka 

et al. showed that mice deficient in DNase leaked mtDNA and developed a TLR9 mediated 

proinflammatory state, cardiomyopathy and heart failure 192. These studies point to a failure 

in autophagy resulting in a higher load of inflammatory intracellular DAMPs. It is noteworthy 

that in vivo mouse models of ATG16L1 deficiency (chimeric191, hypomorphic193, human IBD 

ATG16L1 polymorphism T300A knock-in 194 and epithelial specific ATG16L1-deficiency195, 

196) do not develop spontaneous colitis but are very susceptible to gut inflammation when 

subjected additional injurious stimuli (DSS, murine norovirus or genetic deficiency of ER-

stress). Hence, a postulated potentiating rather than initiating role in gut inflammation.  

 

In terms of ER stress, there is some evidence to show DAMPs can directly result in 

increased ER stress197, 198. Endothelial cells exposed to HMGB1 led to higher expression of 

the ER stress sensors PERK and IREI which was markedly reduced after pre-treatment with 

anti-RAGE antibodies 197. Furthermore, protein and mRNA levels of the ER stress marker 

GRP78 was elevated in HMGB1 treated DCs 198. Intriguingly, HMGB1 co-culture enhanced 
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the T cell proliferation capabilities of DCs but this was not seen when XBP-1 was silenced, 

implicating the ER stress response and the UPR in the maturation and activation of DCs 

activated by DAMPs. In addition, high levels of ER stress may modify the inflammatory 

potential of DAMPs. In a study by Garg et al., high levels of ROS-mediated ER stress prior to 

cell death increased calreticulin expression and ATP secretion 199.  

 

Targeting DAMP-mediated inflammation and clinical translation 

The role of DAMPs as functionally active mediators of inflammation makes this class a highly 

novel and exciting therapeutic target in IBD, which has already shown promise in related 

inflammatory diseases (summarized in Supplementary Table 2). Presently, most potential 

DAMP therapeutics have yet to be studied in clinical trials. A number of challenges exist and 

these include: understanding complex disease-specific DAMP biology with their diverse 

often competing effects; how to localize therapeutic effects to the site of inflammation; 

deciphering DAMP-PRR and DAMP-DAMP interactions; understanding the triggers for 

DAMP release; and how DAMP mediated signaling varies depending on context. 

 

The list of DAMPs is rapidly growing and here we provide brief overviews of the potential 

strategies of translation in IBD: (1) targeting the mechanism or pathways mediating DAMP 

release; (2) direct inhibition of DAMP action and its downstream interactions; (3) modulation 

of factors that shape the pathogenicity of DAMP; and (4) finally, as potential functional 

biomarkers of disease activity. We envisage the clinical position for such approaches to be 

therefore complementary to current anti-inflammatory treatments (e.g. corticosteroids, anti-

TNFs) to reduce the severity and promote complete resolution of inflammation.  

 

In (1), specific DAMP pathways as described earlier are relevant in IBD, namely necroptosis 

and autophagy. In the former, Nec-1, a necroptosis suppressor improves the outcome of a 

number of inflammatory experimental mouse models 200, 201 with lower levels of HMGB1, IL-

23, IL-17A and ROS 202.  RIPK1, RIPK3 and MLKL 203 may be plausible targets for therapy in 
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addition to upstream (e.g. FADD-caspase-8) mechanisms. For example, the small molecule 

necrosulfonamide inhibits MLKL and arrests necroptosis in human cells 169. This approach 

however maybe an oversimplification as the biological processes of inflammation vis-a-vis 

with apoptosis and necroptosis remain complex and requires further thought. For example, 

RIPK1 plays a key role at the cross roads of NFKB-mediated cell survival, caspase-8 

dependent apoptosis and RIPK3 dependent necroptosis. Such consideration is also 

noteworthy in autophagy, given its diverse biological roles in cellular homeostasis. There is 

some evidence to show that pharmacological activation of autophagy (sirolimus or 

everolimus)204 are effective at ameliorating murine models of colitis 205, 206. Sirolimus has 

been used successfully to treat CD in a case report 207, however clinical trials in everolimus 

have been negative in CD 208. 

 

In (2), HMGB1 provides a good example of direct therapeutic targeting of DAMPs via small 

molecules or antibodies. There are several compounds (including anti-HMGB1 neutralizing 

antibodies, steroid derivatives, ethyl pyruvate, ghrelin and others) which block HGMB1 

cytoplasmic translocation and cellular release and demonstrate protective effects in mouse 

models of inflammation (Supplementary Table 2).  The downstream DAMP-PRR interaction 

also offers opportunities, specifically via targeting PRRs (as in the case of ST2 or RAGE) or 

factors that modify this signaling (e.g. TREM-1). In the case of IL-33, which is elevated in 

active IBD60, inhibition of ST2 has been successful in experimental models of colitis and 

arthritis149, 209. Targeting of RAGE, which is a receptor for multiple DAMPs, has also been 

successful115, 210-214. A recent study suggests that some of methotrexate’s anti-inflammatory 

activity may be due to inhibition of HMGB1/RAGE signaling via attachment to the RAGE 

binding region of HMGB1 215. TREM-1, which upregulates DAMP-PRR signaling, is already 

highly expressed in human IBD 121, 122 and its potential role as a target is supported by 

mouse models 121, 216 122, 216. DAMP-inflammasome signaling also offers a potential target 
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although most research thus far has focused on the downstream effects e.g. IL-1β and IL-

18. 

 

Targeting calprotectin as a functional biomarker is of interest, given its established biological 

actions. S100A9 deficient mice lack both S100A8 and S100A9 proteins due to S100A8 

instability in the absence of S100A9 217, 218. In this way, a number have studies have targeted 

calprotectin via S100A9 in animal models. The quinolone-3-carboxamide ABR-215757 binds 

to S100A9 and the S100A8/S100A9 complex blocking interaction with TLR4 and RAGE 219. 

Quinoline-3-carboxamides are compounds with anti-inflammatory actions in inflammatory 

models 220-223. Quinoline-3-carboxamides have been used in humans with encouraging 

results in type 1 diabetes 224, SLE 220 and multiple sclerosis 225. More specific calprotectin 

targeting may be possible via antibodies, and topical blockade at the level of the intestinal 

mucosa in IBD could be an effective strategy with increased efficacy and decreased toxicity. 

This approach was successful in an atherosclerosis model where nanoparticles displaying 

antibodies against S100A9 were designed for preferential uptake and retention within 

atherosclerotic plaques 226.  

 

In (3), specific antioxidant approaches focused on xanthine oxidase, the NADPH oxidases 

(Nox enzymes), mitochondrial ROS and oxidases; and endothelial nitric oxide synthase; 

and/or delivered in a targeted fashion (e.g. at the mitochondria or gut epithelium) may be 

more advantageous to general anti-oxidant therapies, which have not been generally 

effective 227. ER Stress may also be amenable to pharmacological intervention either by 

suppressing ER stress or enhancing the UPR - animal models exist for type 2 diabetes and 

small bowel inflammation 228-230. 

 

Finally in (4), DAMPs offer great potential as biomarkers in disease diagnosis, prediction of 

outcome, monitoring of progression and response to treatment. We have discussed 
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calprotectin as an established IBD biomarker; other DAMPs found in high levels in serum, 

feces or at the mucosal level in IBD (Table 2) may similarly find important clinical roles in the 

future.  At a broader level, investigating if respective IBD sub-phenotypes have specific 

DAMP-signatures offers an opportunity to stratify patients for therapy and clinical trials. 

 

Conclusion 

Our review highlights the emerging role of DAMPs in mediating abnormal inflammation in 

IBD and also many exciting potential prospects in clinical translation in the wider human 

inflammatory disease setting. Our mechanistic understanding of DAMPs, although far from 

complete, is rapidly expanding particularly in relation to novel areas such as autophagy and 

necroptosis. A number of DAMPs have already been implicated in IBD and others are 

currently under investigation although the exact role of these DAMPs needs further 

clarification. There remain a number of unanswered questions and unexplored areas, which 

are potentially fertile fields of research given the role of DAMPs as functional mediators of 

inflammation.  
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Table 1: Putative list of DAMPs & receptors 

DAMP Receptor 

HMGB1 TLR2, TLR4, TLR9, RAGE  

S100 proteins TLR4, RAGE, surface heparin sulfate proteoglycan and 

carboxylated N-glycans 

IL-1α IL-1R 

IL-33 ST2 (IL1RL1) 

Heat Shock Proteins (HSPs) TLR2, TLR4, CD91, CD40, CD14 

ATP P2Y, P2X, NLRP3 

Lactoferrin TLR4  

Mitochondrial DAMPs mtDNA: TLR9 

TFAM: RAGE and TLR9 

N-formyl peptides: FPR1 and FPRL1 

NLRP3 inflammasome 

Extra cellular matrix (ECM) 

components 

 

 

 

Hyaluronan TLR2 and TLR4 

Biglycan TLR2, TLR4, P2X4, P2X7, NLRP3 

Versican TLR2, TLR6, CD14 

Heparan sulfate TLR4 

Fibronectin (extra domain A) TLR2, TLR4 

Fibrinogen TLR4 

Tenascin C TLR4 

Other ECM components eg 

laminin, elastin and collagen 

derived peptides 

Integrins 
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Histones TLR2, TLR4, NLRP3, TLR9 

Galectins TLR2 

Uric Acid TLR2, TLR4, NLRP3, CD14 

Thioredoxin Unknown 

Cathelicidins FPRL1 

Adenosine A1, A2A, A2B, A3 

Defensins CCR6 and TLR4, TLR1, TLR2 

Calreticulin CD91 

RNA TLR3 

Genomic DNA TLR9, AIM2, NLRP3  

Small nuclear RNA TLR7, TLR8 

SAP130 CLEC4E 
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Table 2: DAMPs implicated in IBD and experimental models of colitis 

 

DAMP/Alarmin Main source 
Studies linking DAMP 
with human IBD 

Experimental studies 
linking colitis with DAMP 

S100A8/S100A9 
Neutrophils, monocytes, 
epithelium 

Extensive human literature 
– reviewed 49  

See human studies 

S100A12 Neutrophils 

Fecal levels 50-53; serum 
levels 54-56, 118; mucosal 
levels 55, 153  
 

See human studies 

HMGB1 

Predominantly 
macrophages and 
monocytes but also NK 
cells, DC, neutrophils, 
eosinophils and platelets 

Pediatric: 57; adult: 58 

Colonic endothelial dysfunction: 
28, 152 
 
High levels in experimental 
colitis: 58, 76, 78  

 
Inhibition of HMGB1 attenuates 
intestinal inflammation: 76, 77 

IL-1α 
Neutrophils, 
macrophages, IECs  

66, 65 108, 109 

IL-33 
Initially via stressed IECs 
and later via lamina 
propria cells 104 

UC mucosal levels: 61-63; 
IBD mucosal levels: 59, 60, 64, 

149; serum levels 59, 60  

103, 149, 231-23360 
Regulatory role: 145 

Lactoferrin 
Neutrophils, brush border 
cells, macrophages, 
monocytes, lymphocytes 

Extensive human literature 
49  

See human studies 
 

Heat shock 
proteins (HSPs) ** 

Wide variety of cell types 
Increased levels: 234-237; not 
increased 238 

239 
 

Tenascin-C  Wide variety of cell types 240-242 243 
Hyaluronan Wide variety of cell types 244 244, 245 

Galectins Wide variety of cell types 

Galectin 3: reduced mRNA 
expression in CD 246, 247 

 
Galectin-3: high serum 
concentrations in UC and 
CD 248 

Galectin 1 & 2: suppressant 
activity on inflammation 249, 250 

 
Galectin 4: antibody against 
galectin-4 suppresses intestinal 
inflammation 251 

ATP Wide variety of cell types 
P2X7 receptor upregulation 
in CD 252 

253-255 

 
** It is controversial as to whether heat shock proteins are DAMPs 256, 257 
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Box 1: Features of Crohn’s Disease and Ulcerative Colitis 

 

 Crohn’s Disease Ulcerative Colitis 

Anatomical 

Distribution 

May affect anywhere from mouth to anus; 

commonly affects terminal ileum and colon 

Limited to the large intestine; extends 

from rectum proximally to a variable 

distance 

Type of gut 

inflammation 

Non-continuous, patchy inflammation with skip 

lesions 

Continuous, superficial  

Histology Deep, transmural, focal inflammatory infiltrate. 

Markedly focal cryptitis, non-necrotizing 

granulomas, epithelioid granulomas.  

Superficial (affecting the mucosa and 

submucosa) inflammatory infiltrate with 

loss of crypt architecture, basal 

plasmacytosis, goblet cell depletion 

Main clinical 

features 

Diarrhea, abdominal pain, fatigue, weight loss Rectal bleeding, tenesmus, diarrhea, 

abdominal pain 

Incidence (North 

American data ) 

20.2 per 100,000 person-years 19.2 per 100,000 person-years 

Peak incidence Between 20-40 years Between 20-40 years 

Environmental 

associations 

Smoking, western diet, stress, appendectomy Milder disease with smoking, lower risk 

with appendectomy 

Genetics Themes involving defective intracellular bacterial 

killing and innate immunity (CARD15/NOD2, 

IRGM, IL23R, LRRK2, and ATG16L1) and de-

regulated 

adaptive immune responses, namely the 

interleukin-23 

(IL-23) and T helper 17 (Th17) cell pathway 

(IL23R, IL12B (encoding IL-12p40), STAT3, 

JAK2, and TYK2) 

Themes involving epithelial integrity 

(HNF4A, CDH1, LAMB1, ECM1), innate 

immune function (PLA2G2E, CARD9), 

immune regulatory function (HLA-region, 

IL-10, BTNL2, IFNg-IL25, NKX2-3), and 

cellular homeostasis in response to 

endoplasmic reticulum stress (ORMDL3) 

in UC. 
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Figures 

Figure 1: Danger recognition by the innate immune system 

PRRs such as TLR, NLR and RAGE sense danger associated with infection via recognition 

of evolutionarily conserved PAMPs on pathogens or sterile injury via recognition of DAMPs. 

Activation of cell surface or intracellular PRRs leads to intracellular signalling and 

inflammatory responses. 

 

DAMP cellular mechanisms 

Cellular stress may also lead to damaged cellular components such as ROS generating 

mitochondria. Increased ROS production and oxidative stress may have multiple effects 

including increased translocation and active release of DAMPs and further cellular stress 

leading to a vicious cycle. Defects in homeostatic pathways such as autophagy leads to 

escape of DAMPs such as mtDNA. Intranuclear DAMPs require translocation into the cytosol 

prior to active release. Active release (‘secretion’) occurs through non-classical pathways 

and cellular membrane rupture after necrosis or necroptosis results in passive release of 

DAMPs. ER stress contributes to the functional activity of DAMPs e.g. through increased 

translocation and contributing to its role as an adjuvant; DAMPs can directly lead to 

increased ER Stress.  

 

PRR: pattern recognition receptor; PAMP: pathogen associated molecular pattern; DAMP: 

damage associated molecular pattern; TLR: toll-like receptor; NLR: nucleotide binding 

oligomerisation domain like receptor; RAGE: receptor for advanced glycation end-products; 

IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; ROS: reactive oxygen 

species; mtDNA: mitochondrial DNA; APC: antigen presenting cell; ER stress: endoplasmic 

reticulum stress. 
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Figure 2: Contribution of DAMPs to inflammatory response in IBD 

In health, intestinal epithelial cells undergo constant shedding and apoptosis. Tissue 

damage releases danger signals which initiates a protective inflammatory response to 

restore tissue homeostasis.  

 

In IBD, non-apoptotic cell death, mucosal oxidative stress and deregulation of homeostatic 

pathways lead to overwhelming release of DAMPs creating a pro-inflammatory milieu. These 

DAMPs lead to an inflammatory response through a variety of pathways leading to further 

tissue damage and ongoing intestinal epithelial cell death. 
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Fig 1:  

Danger recognition by the innate immune system 

PRRs such as TLR, NLR and RAGE sense danger associated with infection via recognition of evolutionarily conserved PAMPs on pathogens or sterile 

injury via recognition of DAMPs. Activation of cell surface or intracellular PRRs leads to intracellular signalling and inflammatory responses. 

 

DAMP cellular mechanisms 

Cellular stress may also lead to damaged cellular components such as ROS generating mitochondria. Increased ROS production and oxidative stress 

may have multiple effects including increased translocation and active release of DAMPs and further cellular stress leading to a vicious cycle. Defects in 

homeostatic pathways such as autophagy leads to escape of DAMPs such as mtDNA. Intranuclear DAMPs require translocation into the cytosol prior to 

active release. Active release („secretion‟) occurs through non-classical pathways and cellular membrane rupture after necrosis or necroptosis results in 

passive release of DAMPs. ER stress contributes to the functional activity of DAMPs e.g. through increased translocation and contributing to its role as an 

adjuvant; DAMPs can directly lead to increased ER Stress.  

 

PRR: pattern recognition receptor; PAMP: pathogen associated molecular pattern; DAMP: damage associated molecular pattern; TLR: toll-like receptor; 

NLR: nucleotide binding oligomerisation domain like receptor; RAGE: receptor for advanced glycation end-products; IBD: inflammatory bowel disease; 

IEC: intestinal epithelial cell; ROS: reactive oxygen species; mtDNA: mitochondrial DNA; APC: antigen presenting cell; ER stress: endoplasmic reticulum 

stress. 
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Fig 2: Contribution of DAMPs to inflammatory response in IBD 

In health, intestinal epithelial cells undergo constant shedding and apoptosis. Tissue damage releases danger signals which initiates a protective 

inflammatory response to restore tissue homeostasis. 

In IBD, non-apoptotic cell death, mucosal oxidative stress and deregulation of homeostatic pathways lead to overwhelming release of DAMPs creating a 

pro-inflammatory milieu. These DAMPs lead to an inflammatory response through a variety of pathways leading to further tissue damage and ongoing 

intestinal epithelial cell death. 

 

Page 46 of 59

Nature Publishing Group

Mucosal Immunology



For Peer Review

Supplementary Table 1: Putative list of DAMPs & receptors 

DAMP Receptor References 

HMGB1 TLR2, TLR4, TLR9, RAGE  1-4 
S100 proteins TLR4, RAGE, surface heparin sulfate 

proteoglycan and carboxylated N-glycans 

5-10 

IL-1α IL-1R 11, 12 
IL-33 ST2 (IL1RL1) 13, 14 
Heat Shock Proteins TLR2, TLR4, CD91, CD40, CD14 15-23 
ATP P2Y, P2X, NLRP3 24-26 
Lactoferrin TLR4  27, 28 
Mitochondrial DAMPs mtDNA: TLR9 

TFAM: RAGE and TLR9 
N-formyl peptides: FPR1 and FPRL1 
NLRP3 inflammasome 

29-34 

Extra cellular matrix (ECM) 
components 

 
 
 

 

Hyaluronan TLR2 and TLR4 35-37 

Biglycan TLR2, TLR4, P2X4, P2X7, NLRP3 38, 39 

Versican TLR2, TLR6, CD14 40 

Heparan sulfate TLR4 41 

Fibronectin (extra 
domain A) 

TLR2, TLR4 42, 43 

Fibrinogen TLR4 44, 45 

Tenascin C TLR4 46 

Other ECM 
components eg 
laminin, elastin and 
collagen derived 
peptides 

Integrins  

Histones TLR2, TLR4, NLRP3, TLR9 47-49 
Galectins TLR2 50 
Uric Acid TLR2, TLR4, NLRP3, CD14 51-53 
Thioredoxin Unknown  
Cathelicidins FPRL1 54 
Adenosine A1, A2A, A2B, A3 55 
Defensins CCR6 and TLR4, TLR1, TLR2 56-58 
Calreticulin CD91 19 
RNA TLR3 59 
Genomic DNA TLR9, AIM2, NLRP3  60-62 
Small nuclear RNA TLR7, TLR8 63 
SAP130 CLEC4E 64 
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Supplementary Table 2: Pathways for therapeutic targeting of DAMPs 

Pathway / 

Strategy 
Therapeutic Example DAMP / 

Target 

Inflammatory experimental model / 

Reference 

DAMP Translocation & Release 

Translocation, 
secretion or 
cellular release 

Steroid derivatives (e.g. 
tanshinone IIA) and natural 
compounds  

(e.g. lycopene) 

HMGB1 Endotoxemia & sepsis65, 66 

 

 

 Vasoactive intestinal peptide 
and urocortin 

HMGB1 Sepsis 67 

 Oxaliplatin HMGB1 Arthritis 68 

 Atorvastatin HMGB1 Middle cerebral artery occlusion 69 

 Simvastatin HMGB1 Atherosclerosis 70 

 Ethyl pyruvate HMGB1 Colitis 71 

 Thrombomodulin HMGB1 Sepsis 
72 

 Ghrelin HMGB1 Sepsis 73, 74 

 Pituitary adenylate cyclase-
activating polypeptide 
(PACAP) 

HMGB1 Endotoxemia 75 

 Nicotine HMGB1 Sepsis 76, endotoxemia 77, 78 

Necroptosis Nec-1 RIPK1 Ischemia reperfusion injury 79, traumatic 
spinal cord injury80, acute hepatic injury81 

DAMP Enhancing Mechanisms 

Oxidative stress Targeted anti-oxidant 
strategies 

- 82  

 Negative regulator of ROS - 83 

Defective 
autophagy 

mTOR inhibitors (sirolimus, 
everolimus) 

- Colitis 84, 85 

ER Stress Agents to suppress ER stress - Obesity86, type 2 diabetes87, small bowel 
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(e.g. 4-phenyl butyric acid, 
taurine-conjugated 
ursodeoxycholic acid) 

inflammation 88 

 

 Inducers of the UPR -  

Extracellular DAMPs (Direct targeting) 

Small natural or 
synthetic 
molecules 

Glycyrrhizin 

 

HMGB189 

 

Intracerebral hemorrhage90, middle cerebral 
artery occlusion91, 92, transient spinal cord 
ischemic injury93, ischemia reperfusion 
injury94-96, liver failure97 and sepsis98 

 Dipotassium Glycyrrhizate HMGB1 Colitis 99 

 Quinoline-3-carboxamides S100 proteins SLE 100, encephalomyelitis 101, arthritis 
102, 103, atherosclerosis 104 

Protein antagonist Recombinant HMGB1 A box HMGB1 Sepsis 105, pancreatitis 106, stroke 107, 
ischemia reperfusion injury108, myocardial 
infarction 108 and acute lung injury109 

Antibody mediated 
targeting 

Monoclonal and polyclonal 
antibodies 

HMGB1 Hepatic injury after ischaemia-repurfusion110, 
endotoxemia111, acute lung injury112, 113, 
endotoxin-induced lung injury114, sepsis105, 
lupus nephritis115, arthritis116, 117, 
hemorrhagic shock 118, 119, pancreatitis120, 
atherosclerosis 121, vascular injury122, 
myocardial infarction 123 and stroke 107, 124, 125 

  IL-1a Colitis 126 

  IL-33 Lupus nephritis 127 and allergic airway 
inflammation and rhinitis 128, 129 

  S100A8/S100
A19 complex 

Atherosclerosis 130 

 DNA-conjugated beads HMGB1 Colitis 131 

DAMP Effects 

PRR Activation 

 

Atorvastatin HMGB1 Middle cerebral artery occlusion 69 

DAMP-PRR 
blockade  

 

sRAGE RAGE ligands Arthritis132, diabetic complications 133-135, 
colitis 9. 
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 Anti-RAGE antibodies RAGE ligands Severe sepsis 136 

 Anti-ST2 antibodies IL-33 Arthritis 137 and colitis 138 

 IL-1 receptor antagonist (IL-
1RA) 

IL-1α Rheumatoid arthritis (in humans) 

DAMP-PRR 
mediators  

 

Inhibitory factors e.g. CD24 
fusion protein 

CD-24-
SiglecG/10 

Graft versus host disease139 

Multiple sclerosis (phase I and II trials) 

 Upregulating factors e.g. 
synthetic antagonistic peptide 
LP17 or anti-TREM-1 
antibodies 

TREM-1 Colitis 140, 141 

Other potential targets: downstream signaling pathways; DAMP effects on adaptive immune system and 
epithelial barrier dysfunction 
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