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RESEARCH ARTICLE
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Álvaro Marı́n-Hernández3, Sara Rodrı́guez-Enrı́quez3,4*

1 Unidad de Investigación en Trombosis, Hemostasia y Aterogénesis, Hospital Carlos McGregor, México
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4 Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerologı́a, México City, México
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Abstract

Thrombin-induced platelet activation requires substantial amounts of ATP. However, the spe-

cific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) ver-

sus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of

energy metabolism remain unclear. Here we report an integral analysis on the role of both

energy pathways in human platelets activated by several agonists, and the signal transducing

mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic

acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times

vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mito-

chondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the

main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the

other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical

mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling

pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002

(PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol,

ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the throm-

bin-induced platelet activation. These results suggest that thrombin activates OxPhos and

glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobili-

zation and protein phosphorylation.

Introduction

After thrombin, ADP, collagen, tromboxane A2 or epinephrine trigger platelet activation,

platelets are remodeled to acquire their canonical functions [1]. Platelet remodeling requires

high loads of ATP and induces strong activation of energy pathways [2]. A few studies have

focused on establishing the biochemical mechanisms associated with platelet energy metabo-

lism activation, while identifying the principal ATP supplier (OxPhos or glycolysis) after
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agonist/platelet activation. Pioneer studies revealed that human platelets activated by thrombin

(2–10 U/mL), collagen (40 μg/mL) or arachidonic acid (48 μM), showed a significant increase

(2–5 times) in the total cellular oxygen consumption in comparison to non-activated platelets

[3, 4]. However, it should be noted that human platelets exhibit some non-mitochondrial oxy-

gen consumption (such as xanthine oxido reductase, lipoxygenase and cyclooxygenase) [3–5],

which may mask the actual OxPhos flux. Therefore, cellular oxygen uptake should be per-

formed in the presence of saturating oligomycin, an inhibitor of mitochondrial ATP synthase,

in order to discard all non-mitochondrial oxygen- consuming reactions and unveil the mito-

chondrial oxygen consumption linked to ATP synthesis. In these studies, it was observed that

platelet respiration was highly sensitive to oligomycin (up to 80%), indicating that mitochon-

drial respiration mainly comes from OxPhos [5–7]. On the other hand, platelet aggregation

was highly sensitive to the combination of mitochondrial (antimycin A or cyanide) and glyco-

lytic (2-deoxyglucose) inhibitors; individually both types of inhibitors did not inhibit aggrega-

tion [4]. These last results revealed that (i) ATP derived from both energy pathways is required

for platelet activation [3], and (ii) under stress conditions where one of the ATP suppliers is

impaired, platelets compensate by synthesizing ATP required to carry out their functions [6].

Thrombin stimulated-oxygen consumption correlates with a significant increase (from 0.1

to 1 μM) in the intracellular calcium vs. non-activated platelets [8]. Spikes in intracellular cal-

cium may activate the mitochondrial matrix pyruvate and 2-oxoglutarate dehydrogenases,

whose calcium activation constants (Ka) are close to 1 μM (reviewed by [9]). Thrombin acti-

vates platelets through the protease-activated receptors (PARs) and the glycoprotein Ib (GPIb/

IX/V) complex. GPIb/IX/V signaling pathway mediates (i) PI3k/Akt activation and (ii) protein

phosphorylation [10], whereas PARs signaling mediates the activation of phospholipase C iso-

form β (PLCβ), PI3- and RhoA/Rho kinases [11]. Both GPIb/IX/V and PARs also mediate

increases in intracellular calcium in thrombin-activated platelets [8].

Previous studies have described that Akt over-expression accelerates mitochondrial oxygen

consumption in injured proximal tubular cells. This also correlates with a substantial increase

in the activity of several respiratory chain enzymes such as NADH dehydrogenase, (NAD1)

and cytochrome c oxidase (COX), ΔCm and ATP production [12]. In addition, Akt activation

induces glucose consumption in gliobastoma cells [13]. Thus, although a role for the GPIb/IX/

V and PARs signaling pathways on platelet OxPhos has not been established, these signaling

pathways associated with OxPhos/glycolysis stimulation could be active during platelet activa-

tion. Here we studied the changes in OxPhos and glycolysis induced by platelet-aggregation

agonists at different levels of complexity by assessing changes insignaling protein contents and

energy metabolism fluxes. The results show that the GPIb/Akt signaling pathway stimulated

by thrombin may up regulate energy metabolism in platelets.

Materials and methods

Blood collection

Blood samples were obtained from 20 non drug-treated and healthy donors. All procedures

followed the health protocol approved by the Mexican Social Security Institute Bioethics Com-

mittee (http://www.imss.gob.mx/sites/all/statics/profesionalesSalud/investigacionSalud/

normativaInst/2000-024-001.pdf). Blood was obtained by routine venipuncture from the ante-

cubital vein and collected in 0.4% trisodium citrate buffer.

Platelet-rich plasma (PRP) separation

PRP was obtained at room temperature as described elsewhere [14]. Blood was centrifuged at

250 x g for 10 min and the PRP was carefully separated. The pellet was then centrifuged at

Activation of platelet energy metabolism by GPIb/thrombin
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1000 x g to obtain platelet poor plasma (PPP). Platelet count was determined in PRP by using a

Coulter T-890 cytometer (Coulter Diagnostics, Miami, FL) and adjusted to 225,000 ± 25,000

platelets per μL using autologous platelet poor plasma(PPP).

Washed platelets

For some experiments PRP was centrifuged at 1000 x g for 10 min at room temperature to

obtain a pellet that was re-suspended in saline solution (0.9% w/v NaCl) to 2 x 105 platelets/μL.

Platelet aggregation

Platelet aggregation was determined in human PRP (2x105 platelets/μL) by the turbidimetric

method described elsewhere [14], using an 810-CA Chrono-log aggregometer (Chrono-log

corporation, Havertown, PA), and Aggro-link computer interface (Chrono-log corporation,

Havertown, PA). Platelet aggregation was quantified as the change in transmittance at 37˚C

under stirring in response to any agonist such as 10 μM ADP, 2 μg/mL collagen, 50 μM epi-

nephrine, 1.5 mg/mL ristocetin, 0.5 U/mL thrombin, 50 μM Ca2+ionophore A23187, 0.5 mM

arachidonic acid, or 22 μM thrombin receptor activating peptide 6 (Trap-6).

Oxygen consumption

Oxygen consumption was determined polarographically [15] in PRP (2x105 platelets/μl) at

37˚C by using a Strathkelvin Mitocell Oxymeter MT200 (Strathkelvin Instruments, Scotland,

UK) in the presence or absence of agonist. OxPhos was determined from the 5 μM oligomy-

cin-sensitive respiration. The oxygen solubility in Mexico City at 2240 m altitude and 37˚C is

380 ng atoms oxygen/mL (190 μM O2) [15].

Lactate production

For lactate production, PRP (4x105 platelets/μl) was incubated for 0 (t = 0) and 5 (t = 5) min-

utes at 37˚C in the presence of 5 mM glucose and each agonist was added at the beginning of

the incubation time. The samples were precipitated with perchloric acid (final concentration

3% v/v) and neutralized with 3 M KOH/0.1 M Tris. Neutralized samples were used for lactate

determination by measuring NADH absorbance change at 340 nm [16]. For a rigorous gly-

colysis determination, flux was assayed in the presence of 25 mM 2-deoxyglucose (2DG) to

discard lactate generated by glutamine (glutaminolysis) [17]. For rigorous glutaminolysis

determination, the lactate produced in 2DG-treated cells was also assayed in the presence of

10 μM rotenone. ATP contribution from both energy pathways was calculated as [18].

Mitochondrial membrane potential (ΔΨm)

The ΔCm was determined in phosphate based-buffer, pH 7.4. Washed platelets (1 mg protein/

mL) were incubated at 37˚C with 0.25 μM rhodamine 6G [19] or 2 μM 5,5´,6,6-tetrachloro-1,

1´,3,3´-tetraethyl-benzimidazolyl-carbocyanine iodide (JC-1) [20]. For rhodamine, fluores-

cence was registered in a RF 5301PC spectrofluorophotometer (Shimadzu Scientific Instru-

ments, Maryland, USA) using 480 nm and 565 nm for excitation and emission wavelengths,

respectively. Maximal fluorescence indicating total ΔCm was attained for each experiment

after adding 2.5 μM CCCP. For JC-1 assays, washed platelets (1x104 platelets/μL) were ana-

lyzed in a FACS Scan flow cytometer (Beckton Dickinson, San Jose, CA) at 37˚C, the excitation

wavelength was 488 nm and the emission wavelengths were 535 nm for green (FL1) and 590

nm for red (FL2). Following 2.5 μM CCCP treatment the mitochondrial membrane potential

of the cells was eliminated, as demonstrated by the increase of the monomer emission [20].

Activation of platelet energy metabolism by GPIb/thrombin
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Western blotting

Western blotting was performed as described previously [19]. Washed platelets (2–3X106

cells) in 1% IGEPAL NP40 and 100 mM protease inhibitor mix (Calbiochem; San Diego, CA,

USA) were precipitated and separated under reducing and denaturalizing conditions by 10%

polyacrylamide gel electrophoresis. The proteins were blotted to polyvinylidene (PVDF) mem-

branes (BioRad; Hercules, CA, USA) and Western blot analysis was performed by immuno-

blotting with the following antibodies: PI3K (sites Tyr 458 and Tyr 199), P-PI3K, Akt (site Thr

308), P-Akt, or β-actin at 1:1000 dilutions (all antibodies were from Santa Cruz; CA, USA).

The hybridization bands were revealed with the corresponding secondary antibodies (1:2000

dilutions) conjugated with horseradish peroxidase (Santa Cruz) and the ECL-plus detection

system (Amersham, Buckinghamshire, UK). Densitometric analyses were performed using the

Image J Software (NIH; Bethesda, MD, USA) and double normalization (100% intensity) was

done by using α-tubulin as loading control, calculating the percentage of phosphorylated pro-

tein as phosphorylated protein/tubulin ratio. The percentage level of each enzyme or trans-

porter shown in results represents the mean ± SD of at least three independent experiments.

Statistical analysis

Data points represent means ± SD of at least 3 different assayed preparations. Differences

between means were evaluated using the Student’s t-test with p < 0.05 considered as the crite-

rion of significance.

Results

Effect of platelet agonists on the oxidative phosphorylation of platelet-

rich plasma

Platelet oxygen consumption was evaluated in platelet-rich plasma (PRP), which preserves the

platelets’ physiological environment. In the absence of agonists, total oxygen consumption was

abolished by oligomycin, indicating that in non-activated platelets oxygen consumption was

fully linked to mitochondrial ATP supply (Table 1). Thrombin, arachidonic acid and collagen

Table 1. Energy metabolism in agonist-activated human platelets-rich plasma.

No agonist + Thr + Trap-6 + Arach + Coll + A23 + Epi + ADP + Risto

Total O2 consumption 5±2 165±60 3±1 57±0.9 23±5 28±9 10±1 5±2 4±0.2

OxPhos 5±2 163±4* 3±1 36±2* 19±6* 10±5 2 ± 0.2 5±2 4±0.2

Δψm (AFU) 95±23 139±11* 46±11 96±15 68±23 10±4 100±5 42±10 94±25

ATP contribution (%) 67±15 88±10 15±6 66±12 22±6 10±3 22±5 25± 4 56±25

Total lactate production 7±6 58±9* 56±3* 62 ± 9* 205±50* 320±62* 25±7 41±3.5* 12±3

Glycolysis 6±8 54±6* 41±4* 47 ± 7* 173±40* 229± 57* 18±7 38±1* 8±5

Glutaminolysis 0.4 ± 0.5 3.6 ± 3 14 ± 0.5* 15 ± 2* 32 ± 10* 110 ± 22* 7 ± 0.5* 4 ± 1* 4 ± 2

ATP contribution (%) 32±12 12±6 85±20* 34±15 78 ± 20* 90±16* 78±12* 75±21* 44±12

Total oxygen consumption and OxPhos are expressed in nanogram atom oxygen/min/109 platelets. OxPhos was oligomycin-sensitive oxygen

consumption. Mitochondrial membrane potential (ΔΨm) is expressed in arbitrary fluorescence units (AFU). otal lactate production, glycolysis and

glutaminolysis are expressed in nmol lactate/min/109 platelets. Glycolysis was calculated as the lactate production inhibited by 25 mM 2DG. Glutaminolysis

was calculated as the lactate production resistant to 25 mM 2DG. The 2DG-resistant lactate was >90%sensitive to 10 μM rotenone. For ATP supply

calculations, the rate of OXPhos was multiplied by a P/O ratio of 2.5; for glycolysis, it was assumed that 1 nmol ATP is produced per nmol formed lactate

[15]. The data shown are the mean ± SD of at least 3 independent preparations. Abbreviations: Thr, 0.5 U/mL thrombine; 22 μM Trap-6; Arach, 0.5 mM

arachidonic acid; Coll, 2 μg/mL collagen; A23, 50 μM A23187; Epi, 50 μM epinephrine; 10 μM ADP; Risto, 1.5 mg/mL ristocetin.

*P< 0.05 vs. non agonist-activated platelets.

https://doi.org/10.1371/journal.pone.0182374.t001
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stimulated (2–33 times vs. non activated platelets) total oxygen consumption as well as OxPhos

flux (Table 1). Thrombin also induced an increased ΔCm, suggesting a direct effect on both

the ΔCm-producing OxPhos moiety (i.e. the respiratory chain) and the ΔCm-consuming

OxPhos moiety (i.e. ATP synthase, adenine nucleotide translocator) (Table 1, S1 Fig). This

agonist induced a rapid transitory stimulation of respiration rate (Fig 1A), which was highly

sensitive to antimycin (Fig 1B) and oligomycin (Fig 1C) and slightly stimulated (10–15%) by

the uncoupler CCCP (Fig 1D). The addition of exogenous ADP (i.e., another platelet agonist)

did not affect the stimulation of thrombin-induced OxPhos (Fig 1E).

In contrast, OxPhos stimulation induced by collagen or arachidonic acid did not correlate

with an increased ΔCm; in fact, ΔCm was not affected by arachidonic acid at all. ΔCm was

depressed by collagen (or the Ca2+ ionophore A23187) in comparison to non-stimulated plate-

lets (Table 1, S1 Fig). This last observation suggests that collagen and arachidonic acid prefer-

entially stimulates the ΔCm-consuming OxPhos moiety.

Epinephrine increased total respiration (2-times) but significantly depressed OxPhos

(Table 1), whileTrap-6 and ristocetin had no significant role on OxPhos (Table 1). Trap-6

Fig 1. Effect of thrombin (Thr), OxPhos inhibitors and uncouplers in platelet oxygen consumption.

Oxygen consumption in platelet-rich plasma was determined as described under “Material and Methods”.

Arrows show Thr (0.5 U/ml), ADP (10 μM); CCCP (2.5 μM), oligomycin (Oligo, 5 μM) or antimycin (Antim,

5 μM) additions. Numbers under the traces indicate the rate of oxygen consumption in nanogram atom

oxygen/min/109 platelets. The lines over each trace indicate the change in oxygen consumption before

(dashed lines) and after (solid lines) the addition of thrombin. Experimental traces are representative of at

least 4 independent measurements.

https://doi.org/10.1371/journal.pone.0182374.g001
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significantly decreased ΔCm (Table 1, S1A Fig). Finally, ADP had no measurable impact on

platelet oxygen consumption.

Effect of platelet agonists on the lactate production of platelet-rich

plasma

All agonists assayed, except for ristocetin, increased the total lactate production (6–45 times)

as well as the glycolytic rate (i.e., 2DG sensitive-lactate production) by 3–38 times (Table 1).

Similarly, all agonists assayed including thrombin and ristocetin significantly increased gluta-

minolysis rate (i.e., 2DG resistant-lactate production) (Table 1).

Contribution to ATP supply byOxPhos and glycolysis in activated

platelet-rich plasma

OxPhos was the principal ATP-supplier in platelets activated with thrombin, arachidonic acid

and ristocetin as well as in non-activated platelets (Table 1). In contrast, the main ATP-sup-

plier in Trap-6-, collagen-, A23187-, epinephrine- and ADP-stimulated platelets was glycolysis

(Table 1).

Effect of glycolytic and OxPhos inhibitors on platelet function

Glycolytic and OxPhos inhibitors were added to platelet-rich plasma to assess the dependency

of platelet aggregation on both energy sources. Platelet aggregation was inhibited by 2DG only

in the presence of epinephrine (Table 2). Similar results were obtained for the OxPhos inhibi-

tors antimycin A and oligomycin (Fig 1C and 1D). However, the combined use of 2DG and

OxPhos inhibitors drastically diminished platelet aggregation induced by all agonists, except

for ristocetin and A23187 (Table 2). On the contrary, energy inhibitors did not affect ristoce-

tin-induced platelet aggregation. This suggests that aggregation induced by ristocetin may

involve mechanisms not dependent on ATP as occurs with the other agonists. These results

also indicate that there was not a differential sensitivity of platelet aggregation induced by the

different agonists to either glycolysis or OxPhos inhibitors.

Effect of GPIb inhibition on thrombin-stimulated OxPhos and glycolysis

Thrombin induced platelet aggregation (Fig 2A) and increased total cellular respiration,

OxPhos and ΔCm (Table 1, Fig 2B and 2C) were achieved at similar doses (1–2 U/mL) sug-

gesting a mechanistic link.

Table 2. Effect ofglycolytic and OxPhos inhibitors on agonist-induced platelet aggregation.

Agonist Total aggregation 2DG Antim 2DG/Antim 2DG/Oligo

Thr 90±10 88±9 89±8 25±8* 3±1*

AA 84±6 54±3 79±6 8±1* 8±3*

Coll 66±7 52±6 62±5 2±2* 18±6*

A23 75±7 40±5 75±4 15±3* 80±10

Epi 79±5 18±6* 79±4 7±0.8* 20±6*

ADP 60±8 40±4 46±26 2±2* 15±5*

Risto 84±6 70±8 80±6 80±1 83±7

Total aggregation is expressed in percentage of transmittance. Data shown are the mean ± SD of at least 3 independent preparations. Abbreviations are as

in Table 1. 2-deoxyglucose, 25 mM 2DG; oligomycin, 5 μM Oligo; Antimycin, 5 μM Antim.

*P<0.05 vs agonists-activated platelets in the absence of inhibitor.

https://doi.org/10.1371/journal.pone.0182374.t002
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In order to determine the identity of the thrombin-activated receptors involved in the

OxPhos activation, we examined the effects of Trap-6 that specifically activates PAR-1 [21]

and heparin, which specifically inhibits GPIb-thrombin binding [21] on aggregation and oxy-

gen uptake (Fig 3).

A typical human platelet aggregation profile in the presence of exogenous thrombin (0.5

U/mL) [4] is shown in Fig 3A. As expected, inhibition of GPIb receptor by heparin (Fig 3B)

blocked platelet aggregation induced by thrombin. The addition of the PAR-1 activator Trap-6

restored platelet aggregation (Fig 3B). In parallel, the thrombin-induced increase in oxygen

consumption was totally blocked by heparin (Fig 3D), indicating the participation of GPIb in

this process. It is noted that heparin inhibited the thrombin induced-OxPhos stimulation at

concentrations (Table 3) similar to those used for blocking the GPIb-thrombin binding recep-

tor [22].

Fig 2. Effect of thrombin (Thr) in platelet aggregation and mitochondrial function. (A) Platelet

aggregation; (B) platelet oxygen consumption; (C) mitochondrial membrane potentialin the presence of

increasing concentrations of thrombin (Thr) as described in “Material and Methods” section. CCCP was added

at 2.5 μM. AFU, arbitrary fluorescence units.

https://doi.org/10.1371/journal.pone.0182374.g002

Fig 3. Effect of PAR-1 activation or GPIb inhibition on OxPhos stimulation induced by thrombin.

Platelet aggregation (A,B) and oxygen consumption (C,D) were measured in thrombin (Thr) or Trap-6

stimulated platelets. Platelet rich plasma was incubated for 3 min with 1.5 mg/mL heparin (Hep, B,D) at 37˚C

under constant stirring. Afterwards, 0.5 U/mL thrombin or 22 μM Trap-6 was added as indicated by arrows. In

(C), thrombin (a-c) was added in the presence of tirofiban (70 mg/ml) (b) or aspirin (1 μM) (c). In (d) only Trap-

6 was added.

https://doi.org/10.1371/journal.pone.0182374.g003
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The binding of fibrinogen to the GPIIb/IIIa receptor and the formation of thromboxane

are involved in platelet aggregation induced by thrombin [1]. To establish whether the activa-

tion of these mechanisms also affects mitochondrial function, inhibitors of GPIIb/IIIa (tirofi-

ban) and tromboxane formation (aspirin) were assayed on thrombin-stimulated oxygen

consumption (Fig 3C). Thrombin-stimulated oxygen consumption was not affected by tirofi-

ban (Fig 3Cb) or aspirin (Fig 3Cc), indicating that both mechanisms are not implicated in the

mitochondrial function stimulation. On the other hand, in platelets stimulated byTrap-6, no

changes in the oxygen consumption were observed (Fig 3Cd), suggesting that PAR-1 was not

implicated in the oxygen consumption stimulation.

Ristocetin activates von Willebrand factor, which in turn binds to GPIb on the thrombin

binding site [23], thus decreasing thrombin binding to GPIb. Ristocetin also inhibited the acti-

vation of OxPhos induced by thrombin (Table 3), indicating that GPIb-coupled signaling

pathway is involved in the thrombin-induced OxPhos activation. In addition, heparin (0.15

mU/mL) and ristocetin (1.5 mg/mL) significantly decreased (>95%) thrombin-stimulated gly-

colysis, again indicating that GPIb activation was involved in the thrombin-regulation of both

energy pathways.

Effect of modulators of PI3K/Akt, tyrosine-kinase, cAMP, ADP and

calcium-dependent signaling pathways on the thrombin-stimulated

OxPhos

It has been suggested that PI3K/Aktand calcium-dependent signaling pathways are involved in

thrombin mediated GPIb activation [10]. In order to further demonstrate that PI3K/Akt and

calcium-dependent signaling pathways are indeed involved in the stimulation of energy

Table 3. Inhibition of thrombin-stimulated OxPhos (IC50) by GPIb ligands.

Inhibitor IC50

GPIb-thrombin binding antagonists

Heparin 5±1 μU/mL

Ristocetin 0.6±0.01 mg/mL

PI3K inhibitors

Wortmannin 5 ± 1 nM

LY294002 25 ± 7 nM

Tyr kinases inhibitor

PP1 200 ± 25 nM

Ca2+ movement antagonists

ATP 2.5 ± 1 mM

Resveratrol 500 ± 70 nM

Ca2+ movement inducer

Thapsigargin 2.5 ± 1 nM

[cAMP] increase inducer

PGE1 0.4 ± 0.05 mM

OxPhos was determined as described under “Materials and Methods”. The inhibitors were assayed in the

following concentration ranges: Heparin (0.01–0.4 mU/mL), ristocetin (0.5–3.5 mg/mL), wortmannin (0.5–10

nM), Ly294002 (2–100 nM), PP1 (0.1–1.5 mM), ATP (1–25 mM), resveratrol (0.5–20 μM), EGTA (0.5–45

mM), thapsigargin (0.5–6 nM) and PGE1 (0.25–5 mM). These inhibitors were incubated with PRP for 1 min

prior to the addition of 0.5 U/mL thrombin. The data shown represent the mean ± SD of 3 different assayed

preparations.

https://doi.org/10.1371/journal.pone.0182374.t003
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metabolism induced by thrombin, we tested the effects of inhibitors of PI3K (wortmannin and

LY2940029) and scr-tyrosine-kinase (PP1, 4-amino-5-4-chlorophenyl-7-t-butyl pyrazolo-D-3,

4-pyridine) as well as the platelet adenylate cyclase activator (prostaglandin E1, PGE1) and

inhibitors of (i) endoplasmic reticulum calcium-release (resveratrol, ATP) and (ii) calcium

ATPase (thapsigargin).

Wortmannin and LY2940029 at nanomolar doses and PGE1 at high doses (>0.5 mM),

compared to those required to block the GPIb-dependent platelet binding to thrombin [10],

inhibited the thrombin-induced OxPhos activation (Table 3). This suggests that PI3K/Akt and

adenylate cyclase are involved in the thrombin-induced OxPhos activation. Since respiration

was only slightly affected (20%) by high PP1 (4 μM), scr-tyrosine-kinase appeared to have a

minor role on thrombin-stimulated OxPhos (Table 3). In turn, resveratrol and ATP inhibited,

while thapsigargin increased, the thrombin stimulated OxPhos at doses similar to those able to

modulate intracellular calcium [24–26], suggesting that OxPhos activation by thrombin is

mediated by calcium fluctuations.

Other mechanisms related to the activation of GPIb involve some nucleotides such as ADP

or cAMP. It has been shown that the the GPIb-mediated aggregation induced by thrombin is

strongly inhibited by apyrase which hydrolyses platelet-secreted ADP [10]. However, we

Fig 4. Total and phosphorylated PI3K and Akt contents in thrombin and other agonist-activated platelets.

Non-phosphorylated and phosphorylated PI3K and Akt were detected with specific antibodies as described under

“Material and Methods”. (A) PRP was incubated at 37˚C for 5 min under stirring in the presence of thrombin, Thr

(0.5 U/mL); arachidonic acid, Arach (0.5 mM), collagen, Coll (2 μg/ml), epinephrine, Epi (50 μM), ADP (10 μM), or

Trap-6 (22 μM). (B) PRP was incubated in the presence of the indicated concentrations of thrombin (U/mL, lane

1–4), or thrombin (0.5 U/ml) and PP1 0.5 μM (lane 5), wortmannin 20 nM (lane 6), heparin 0.1 mU/mL (lane 7) or

ristocetin 1.5 mg/mL (lane 8). Data represent mean ± SD of at least 4 independent determinations. *P<0.05 vs.

control (non-activated platelets); **P<0.01 vs. control.

https://doi.org/10.1371/journal.pone.0182374.g004
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observed that incubation with apyrase (0.5 U/mL) did not affect thrombin-OxPhos stimulation

(data not shown).

PI3K and Akt phosphorylation in response to thrombin

To further establish the role of PI3K/Akt in thrombin induced OxPhos stimulation, changes in

the total and active (phosphorylated) isoforms of PI3K and Akt were evaluated after thrombin

treatment (Fig 4). Indeed, thrombin (2–3 times) promoted a significant increase in the phos-

phorylated PI3K (p-PI3K) and AKT (p-AKT) contents, whereas arachidonic acid, epinephrine,

ADP, collagen and Trap-6 were ineffective. Collagen caused a significant PI3K phosphoryla-

tion (50% vs. non-activated platelets) but Akt phosphorylation was negligible (Fig 4A). The

dose-dependent increase in PI3K and Akt phosphorylation induced by thrombin was blocked

by PP1, wortmannin, heparin and ristocertin (Fig 4B) indicating that the PI3K/Akt pathway

was certainly involved in the GPIb-dependent thrombin-induced OxPhos stimulation and

platelet aggregation according to Adam et al., [10].

Discussion

Platelet activation is a highly energy demanding cellular process [2]. In consequence, platelet

aggregation agonists increase energy metabolism by different mechanisms [3–5]. Thrombin

particularly thrombin caused a strong stimulation of both glycolysis and OxPhos, being

OxPhos the principal ATP supplier; whereas arachidonic acid and collagen also stimulated

OxPhos but to a much lesser extent. On the contrary, collagen promoted a stronger stimula-

tion of glycolysis compared to thrombin- or arachidonic acid- stimulated platelets. Therefore,

glycolysis predominated in the supply of ATP.

Previous studies show that treatment with thrombin, arachidonic acid and collagen results

in increased cytosolic and mitochondrial calcium levels [8, 27, 28] at concentrations where sev-

eral OxPhos enzymes (FAD-glycerol phosphate dehydrogenase, pyruvate dehydrogenase,

NAD+-isocitrate dehydrogenase and α-ketoglutarate dehydrogenase) are fully activated (0.1–

1 μM), contributing to the generalized OxPhos activation observed after agonist treatment [8].

Activation of OxPhos flux in thrombin-stimulated platelets correlated with an enhanced Δψm

further supporting the proposal that thrombin activates Krebs cycle enzymes for NADH pro-

duction-increasing the electron transfer for proton pumping in the respiratory chain. Con-

trariwise, increased calcium activates the translocation of glucose transporter type 3 (GLUT3)

to the plasma membrane [29]. Elevation of functional glucose transporters is associated with a

significant increase in the glycolytic flux because GLUTs represent one of the main glycolytic

controlling steps [30]. Ca2+ may also stimulate phosphofructokinase type I (PFK-I) activity

through the phosphofructokinase type 2 (PFK-2) activation, the enzyme involved in the syn-

thesis of fructose 2,6 bisphosphate, a potent PFK-I activator [31]; and Ca2+ -mediated activa-

tion of glycogen phosphorylase for glycogen breakdown and glucose-6-phosphate synthesis

[32]. Accordingly, here we found that thrombin and other agonists increase the glycolytic flux.

Activation of OxPhos also correlated with an increased glutaminolysis rate, as previously

reported [6, 17]. Glutamine oxidation requires of the activation of several mitochondrial

enzymes (glutaminase, glutamate dehydrogenase, alanine-asparte transaminase) as well as an

active Krebs cycle and an accelerated efflux of mitochondrial malate to cytosol for its onward

transformation to pyruvate and oxidation to lactate [6, 33]. Perhaps agonists activate enzymes

involved in glutaminolysis or in other mitochondrial intermediary supplier-pathways (β-oxi-

dation, ketone bodies and amino acid degradation, etc).

Ravi et al. [6] also reported that thrombin stimulated OxPhos in human platelets but to a

lesser extent (1.5-times) than that found in our study (33-times). This difference may be
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attributed to the non-fresh human platelets used by Ravi et al., i.e. platelets were isolated after

6–8 days blood collection, which in turn drastically impairs mitochondrial function [34]. For

this reason, the present study was carried out using fresh platelets (PRP). In addition, the gly-

colysis rate in our thrombin-stimulated fresh platelets was lower than that reported by Ravi

et al. [6], in agreement with reports indicating that old platelets exhibit high lactate production

[35].

Mitochondria is the principal ATP supplier in thrombin-induced platelet

activation

Both glycolytic and OxPhos fluxes were significantly stimulated by several platelet agonists.

Compared with non-stimulated platelets where both pathways equally contributed to ATP

supply (50%), thrombin promoted a shift in the energy dependence under which mitochon-

dria provided more than 85% of the total ATP. Contrariwise, Trap-6, collagen, A23187, epi-

nephrine and ADP promoted that glycolysis was the principal ATP supplier. This takes

relevance because independently of agonist used, the activated platelets always will have a con-

stant energy supply. Therefore, the combined use of glycolytic and OxPhos inhibitors may pro-

mote a drastic abolishment of the majority of platelet aggregation inducers. Akkerman and

Holmsen [4] also found that platelet aggregation is highly sensitive to combined OxPhos plus

glycolytic inhibitors. They concluded that OxPhos and glycolysis may compensate for each

other in order to provide ATP for aggregation. However, our experiments show that both

energy pathways supply the ATP required for platelets aggregation after collagen, epinephrine

and arachidonic acid treatment.

Thrombin activates OxPhos and glycolysis through GPIb-dependent

signaling

Although most of the agonists analyzed here promoted changes in the energy pathways, we

mainly focused on thrombin signaling because it is the physiological agonist that causes the

strongest response in platelets (reviewed in [1]). Thrombin promotes the activation of multiple

membrane receptors including GPIb/V/IX complex and some PARs [36] whose activation is

linked to increases in total cellular respiration [4]. In this regard, thrombin signaling in plate-

lets depends principally on PAR-1 and GPIb receptors [10]. Platelets also contain the thrombin

receptor PAR-4 involved in the platelet activation [36], but under the experimental conditions

used in this study (low thrombin concentrations and short incubation times), any role of PAR-

4 is negligible [37].

Analysis with the PAR-1 activator Trap-6, at doses in which PAR-1 is significantly activated

(from 60–100%) in human platelets [21] showed that Trap-6 did not modify the rates of

OxPhos, suggesting that PAR-1 was not involved in the platelet energy metabolism activation

induced by thrombin. In the presence of ristocetin or heparin -both inhibitors of GPIb [22, 23]-

thrombin was not able to induce glycolysis or OxPhos activation. It should be noted that ristoce-

tin and heparin at doses used in this study failed to affect any of the energy pathways (data not

shown), which supports the conclusion that GPIb receptor is involved in the thrombin-induced

stimulation of OxPhos and glycolysis. Moreover, a GPIb-independent effect of heparin on

thrombin-induced activation of platelets seems unlikely, because heparin binds to thrombin-

orGPIb-receptors using the same binding domain [22]. Furthermore, heparin inhibited throm-

bin-induced platelet aggregation but not Trap-6, indicating that PAR-1 activation was not

impaired by heparin, as also reported by others [38]. Thus, the evidence suggests that heparin

specifically inhibits only GP1b-dependent thrombin-induced responses.
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The inhibitory effects of ristocetin and heparin on thrombin-induced platelet aggregation

involves strong inhibitor/receptor interaction [22, 23], thus perhaps blocking the subsequent

downstream intracellular calcium rise and hence the stimulation of glycolysis and OxPhos. Plas-

min, a potent GPIb destabilizing agent, also promotes a strong depression in the oxygen con-

sumption of thrombin-treated human platelets [39] clearly indicating a central role for GPIb in

modulating mitochondrial function perhaps through intracellular calcium movements.

Molecular mechanisms involved in the GPIb-mediated energy pathways

activation by thrombin

GPIb may coordinate with other receptors such as the adenosine diphosphate receptor subtype

12 (P2Y12) for adequate signaling and further P2Y12 activation requires extracellular ADP

interaction [10]. However, the incubation with the extracellular ADP scavenger apyrase did

not affect the OxPhos and glycolysis stimulation induced by thrombin. This suggests that (a)

secreted ADP does not play a role in this process or that (b) ADP secretion takes place down-

stream of thrombin-induced energy pathways stimulation.

In addition to GPIb, GPIIb/IIIa plays a pivotal role in platelet-platelet interaction induced

by thrombin and other agonists [40]. To assess whether GPIIb/IIIa has a role in the thrombin-

induced energy pathways stimulation, the antagonist tirofiban was tested. Tirofiban at doses

reported to inhibit GPIIb/IIIa function (i.e. fibrinogen binding) [41] did not prevent the

stimulation of OxPhos induced by thrombin, indicating that platelet aggregation through

fibrinogen bridges is not a prerequisite for the stimulation of OxPhos induced by thrombin.

Similarly, it became clear that thrombin-mediated thromboxane formation through cyclooxy-

genase activity was not involved in the energetic stimulation by thrombin, as aspirin did not

perturb the thrombin-mediated stimulation of OxPhos. These results discarded a role for

P2Y12 or GPIIb/IIIa in the thrombin activation of both energy pathways.

cAMP is a negative modulator of platelet aggregation induced by thrombin. Accordingly,

PGE1 inhibited the stimulatory effect of thrombin on OxPhos, indicating that cAMP increase

triggered by PGE1 has a negative control of thrombin-stimulated OxPhos. Accordingly, it has

been demonstrated that cAMP decrease the ADP-mediated platelet activation through recep-

tor P2Y12 promoting GPIbβ phosphorylation [42], which in turn may block platelet OxPhos.

PI3K/Akt modulates energy metabolism in thrombin-activated platelets

GPIb/thrombin activates several signaling pathways such as PI3K/Akt, which increase the

cytosolic Ca2+level and the phosphorylation (in the tyrosil residues) of several platelet proteins

[10]. In assessing the hypothesis that the activation of energy pathways is mediated by GPIb/

thrombin signaling, the phosphorylation status of PI3K and Akt was determined. As expected,

thrombin promoted a strong phosphorylation (i.e., activation) of PI3K and Akt, as also re-

ported by other groups [10]. Arachidonic acid, collagen, epinephrine and ADP also promoted

the phosphorylation of PI3K and Aktbut to significantly lesser extent as reported in other stud-

ies [43]. The use of PI3K/Akt inhibitors prevented the thrombin mediated-stimulation of

OxPhos at concentrations in which OxPhos and glycolysis are not affected [44]. This supports

the explanation that the stimulation of energy metabolism is mediated by the PI3K/Akt signal-

ing pathway.

Therefore, it can be concluded that there is a strong correlation between Akt activation and

OxPhos and glycolysis stimulation in thrombin-activated platelets. In this regard, it has been

considered that Akt may have regulatory roles on energy metabolism [45]. Insulin-like growth

factor-1 and insulin promote the phosphorylation and translocation of Akt from the cytosol to

the mitochondria [45].
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Akt activation has been involved in the activation of mitochondrial or glycolytic function in

several models. In isolated mitochondria of renal proximal tubular cells [12] the activation of

Akt with a neurotoxic agent increased both citrate driven-state 3 mitochondrial respiration

and Δψm by 38–50%, correlating with increased (39–55%) respiratory chain complex III and

ATP synthase activities [12]. In murine pro-B lymphocytic, human osteosarcoma cells,

Hepa1c1c7 cells, Akt activation was linked to an over-expression of glycolytic enzymes

(GLUT1, hexokinase type 2) which in turn correlated with high glycolytic flux [13]. In bovine

heart, Akt directly phosphorylates PFK2 leading to enhanced levels of fructose 2,6 bispho-

sphate, the most potent PFK-I activator, and thus increasing glycolysis [46].

Activation of OxPhos by thrombin depends on calcium movements and

platelet protein phosphorylation

ATP and resveratrol inhibit intracellular calcium mobilization in thrombin activated platelets

[24–26]. Although it was demonstrated that resveratrol has multiple targets, at the concentra-

tions assayed, it principally modifies the intracellular free calcium concentration after throm-

bine or collagen treatment [24, 47–49]. Since these two agonists partially prevented the

stimulation of OxPhos by thrombin, it can be concluded that increased cytosolic Ca2+mediates

the thrombin stimulation of OxPhos. At the doses assayed, resveratrol does not directly affect

OxPhos [50].

Concluding remarks

With these observations, we conclude that thrombin stimulates glycolysis and OxPhos through

GPIb-triggered signaling involving phosphorylation of signaling proteins like Akt and perhaps

calcium movements. Our results may contribute to the knowledge of the mechanisms involved

in the regulation of energy metabolism in platelets and also to the elucidation of the mecha-

nisms responsible for platelet metabolic regulation and function alterations especially in

thrombosis-associated diseases [51].
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S1 Fig. Mitochondrial membrane potential (ΔCm) in agonist-activated platelets. (A)

Washed platelets were incubated with rhodamine (0.25 μM) and 0.5 U/mL thrombin (Thr),

0.2 μg/ml collagen (Coll), 50 μM A23187 (A23) or 10 μM ADP. Signal was calibrated by the

addition of 2.5 μM CCCP. ΔCm is expressed in arbitrary fluorescence units (AFU). (B) For

plasma rich platelets, cells were incubated with JC-1 (2 μM) and same agonist concentrations

used in (A). Platelet regions were selected as CD42 positive events (data not shown). Represen-

tative images of at least 4 independent experiments.
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Reséndiz, Álvaro Marı́n-Hernández, Sara Rodrı́guez-Enrı́quez.

Methodology: Norma Corona de la Peña, Manuel Gutiérrez-Aguilar, Ileana Hernández-
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