208 research outputs found

    Effects of Heat-Producing Elements on the Stability of Deep Mantle Thermochemical Piles

    Get PDF
    ©2020. American Geophysical Union. All Rights Reserved. Geochemical observations of ocean island and mid-ocean ridge basalts suggest that abundances of heat-producing elements (HPEs: U, Th, and K) vary within the mantle. Combined with bulk silicate Earth models and constraints on the Earth's heat budget, these observations suggest the presence of a more enriched (potentially deep and undepleted) reservoir in the mantle. Such a reservoir may be related to seismically observed deep mantle structures known as large low shear velocity provinces (LLSVPs). LLSVPs might represent thermochemical piles of an intrinsically denser composition, and many studies have shown such piles to remain stable over hundreds of Myr or longer. However, few studies have examined if thermochemical piles can remain stable if they are enriched in HPEs, a necessary condition for them to constitute an enriched HPE reservoir. We conduct a suite of mantle convection simulations to examine the effect of HPE enrichment up to 25× the ambient mantle on pile stability. Model results are evaluated against present-day pile morphology and tested for resulting seismic signatures using self-consistent potential pile compositions. We find that stable piles can form from an initial basal layer of dense material even if the layer is enriched in HPEs, depending on the density of the layer and degree of HPE enrichment, with denser basal layers requiring increased HPE enrichment to form pile-like morphology instead of a stable layer. Thermochemical piles or LLSVPs may therefore constitute an enriched reservoir in the deep mantle

    Study of the distribution of Malassezia species in patients with pityriasis versicolor and healthy individuals in Tehran, Iran

    Get PDF
    BACKGROUND: Pityriasis versicolor is a superficial infection of the stratum corneum which caused by a group of yeasts formerly named pityrosporium. The taxonomy of these lipophilic yeasts has recently been modified and includes seven species referred as Malassezia. The aim of this study is to compare the distribution of Malassezia species isolated from pityriasis versicolor lesions and those isolated from healthy skins. METHODS: Differentiation of all malassezia species performed using morphological features and physiological test including catalase reaction, Tween assimilation test and splitting of esculin. RESULTS: In pityriasis versicolor lesions, the most frequently isolated species was M. globosa (53.3%), followed by M. furfur (25.3%), M. sympodialis(9.3%), M. obtusa (8.1%) and M. slooffiae (4.0%). The most frequently isolated species in the skin of healthy individuals were M. globosa, M. sympodialis, M. furfur, M. sloofiae and M. restricta which respectively made up 41.7%, 25.0%, 23.3%, 6.7% and 3.3% of the isolated species. CONCLUSIONS: According to our data, M. globosa was the most prevalent species in the skin of healthy individuals which recovered only in the yeast form. However, the Mycelial form of M. globosa was isolated as the dominant species from pityriasis versicolor lesions. Therefore, the role of predisposing factors in the conversion of this yeast to mycelium and its subsequent involvement in pityriasis versicolor pathogenicity should be considered

    An unusual presentation of anetoderma: a case report

    Get PDF
    BACKGROUND: Anetoderma is a benign condition with focal loss of dermal elastic tissue resulting in localized areas of flaccid or herniated saclike skin. Currently, anetoderma is classified as either primary (idiopathic), or secondary anetoderma (which is associated with a variety of skin conditions, penicillamine use, or neonatal prematurity). Lesions appear on the upper arms, trunk, and thighs. CASE PRESENTATION: We report a 14-year-old boy, which was noticed to have had multiple, white, non-pruritic areas on the acral sites of upper and lower extremities for two years. In physical examination, the patient had normal mental development. Skin lesions consisted of scattered, white to skin-colored papules, less than 1 cm in diameter, and with central protrusion, with distribution on dorsal part of the index finger, forearms, distal portion of thighs and calves. Lesions were detected neither on the trunk nor the proximal areas of extremities. There are no sensory changes associated with the lesions. Otherwise, his general health was good. He did not have any medication consumption history. Family history was negative. Laboratory examinations were within normal limits. Skin biopsy from one of his lesions was done, that confirmed the diagnosis of anetoderma. CONCLUSIONS: In summary, we report a case of anetoderma on unusual sites of the skin. We could not find similar reports of anetoderma developing on distal extremities without involvement of the upper trunk and proximal arms, in the medical literature

    IgE Immune Complexes Stimulate an Increase in Lung Mast Cell Progenitors in a Mouse Model of Allergic Airway Inflammation

    Get PDF
    Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcΔRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma

    Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Get PDF
    BACKGROUND: The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. RESULTS: TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. CONCLUSION: The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function

    RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium

    Get PDF
    Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium. Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity. Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts an

    Stability of Metabolic Correlations under Changing Environmental Conditions in Escherichia coli – A Systems Approach

    Get PDF
    Background: Biological systems adapt to changing environments by reorganizing their cellular and physiological program with metabolites representing one important response level. Different stresses lead to both conserved and specific responses on the metabolite level which should be reflected in the underlying metabolic network. Methodology/Principal Findings: Starting from experimental data obtained by a GC-MS based high-throughput metabolic profiling technology we here develop an approach that: (1) extracts network representations from metabolic condition-dependent data by using pairwise correlations, (2) determines the sets of stable and condition-dependent correlations based on a combination of statistical significance and homogeneity tests, and (3) can identify metabolites related to the stress response, which goes beyond simple observations about the changes of metabolic concentrations. The approach was tested with Escherichia coli as a model organism observed under four different environmental stress conditions (cold stress, heat stress, oxidative stress, lactose diauxie) and control unperturbed conditions. By constructing the stable network component, which displays a scale free topology and small-world characteristics, we demonstrated that: (1) metabolite hubs in this reconstructed correlation networks are significantly enriched for those contained in biochemical networks such as EcoCyc, (2) particular components of the stable network are enriched for functionally related biochemical pathways, and (3) independently of the response scale, based on their importance in the reorganization of the correlation network a set of metabolites can be identified which represent hypothetical candidates for adjusting to a stress-specific response. Conclusions/Significance: Network-based tools allowed the identification of stress-dependent and general metabolic correlation networks. This correlation-network-based approach does not rely on major changes in concentration to identify metabolites important for stress adaptation, but rather on the changes in network properties with respect to metabolites. This should represent a useful complementary technique in addition to more classical approaches

    Measurement of W-pair production in e+e−e^+ e^- collisions at 189 GeV

    Get PDF
    The production of W-pairs is analysed in a data samplecollected by ALEPH at a mean centre-of-mass energy of 188.6 GeV,corresponding to an integrated luminosity of 174.2 pb^-1. Crosssections are given for different topologies of W decays intoleptons or hadrons. Combining all final states and assumingStandard Model branching fractions, the total W-pair cross sectionis measured to be 15.71 +- 0.34 (stat) +- 0.18 (syst) pb.Using also the W-pair data samples collected by ALEPH at lowercentre-of-mass energies, the decay branching fraction of the W bosoninto hadrons is measured to be BR (W hadrons) = 66.97+- 0.65 (stat) +- 0.32 (syst) %, allowing a determination of theCKM matrix element |V(cs)|= 0.951 +- 0.030 (stat) +- 0.015 (syst)

    Observation of a resonant structure near the Ds+Ds−D_s^+ D_s^- threshold in the B+→Ds+Ds−K+B^+\to D_s^+ D_s^- K^+ decay

    Get PDF
    An amplitude analysis of the B+→Ds+Ds−K+B^+\to D_s^+ D_s^- K^+ decay is carried out to study for the first time its intermediate resonant contributions, using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. A near-threshold peaking structure, referred to as X(3960)X(3960), is observed in the Ds+Ds−D_s^+ D_s^- invariant-mass spectrum with significance greater than 12 standard deviations. The mass, width and the quantum numbers of the structure are measured to be 3956±5±103956\pm5\pm10 MeV, 43±13±843\pm13\pm8 MeV and JPC=0++J^{PC}=0^{++}, respectively, where the first uncertainties are statistical and the second systematic. The properties of the new structure are consistent with recent theoretical predictions for a state composed of ccˉssˉc\bar{c}s\bar{s} quarks. Evidence for an additional structure is found around 4140 MeV in the Ds+Ds−D_s^+ D_s^- invariant mass, which might be caused either by a new resonance with the 0++0^{++} assignment or by a J/ψϕ↔Ds+Ds−J/\psi \phi\leftrightarrow D_s^+ D_s^- coupled-channel effect.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-018.html (LHCb public pages

    What Is Direct Allorecognition?

    Get PDF
    Direct allorecognition is the process by which donor-derived major histocompatibility complex (MHC)-peptide complexes, typically presented by donor-derived ‘passenger’ dendritic cells, are recognised directly by recipient T cells. In this review, we discuss the two principle theories which have been proposed to explain why individuals possess a high-precursor frequency of T cells with direct allospecificity and how self-restricted T cells recognise allogeneic MHCpeptide complexes. These theories, both of which are supported by functional and structural data, suggest that T cells recognising allogeneic MHC-peptide complexes focus either on the allopeptides bound to the allo-MHC molecules or the allo-MHC molecules themselves. We discuss how direct alloimmune responses may be sustained long term, the consequences of this for graft outcome and highlight novel strategies which are currently being investigated as a potential means of reducing rejection mediated through this pathway
    • 

    corecore