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Abstract Direct allorecognition is the process by which
donor-derived major histocompatibility complex (MHC)-pep-
tide complexes, typically presented by donor-derived ‘passen-
ger’ dendritic cells, are recognised directly by recipient Tcells.
In this review, we discuss the two principle theories which
have been proposed to explain why individuals possess a
high-precursor frequency of T cells with direct allospecificity
and how self-restricted T cells recognise allogeneic MHC-
peptide complexes. These theories, both of which are support-
ed by functional and structural data, suggest that T cells
recognising allogeneic MHC-peptide complexes focus either
on the allopeptides bound to the allo-MHC molecules or the

allo-MHC molecules themselves. We discuss how direct
alloimmune responses may be sustained long term, the conse-
quences of this for graft outcome and highlight novel strate-
gies which are currently being investigated as a potential
means of reducing rejection mediated through this pathway.
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Introduction

The ability of immune cells to distinguish between ‘self’ and
‘non-self’ is of fundamental importance. It ensures that invad-
ing pathogens are efficiently removed whilst tolerance to-
wards cells of self-origin is maintained. In transplantation,
the introduction of ‘non-self’ cells or tissues into a recipient
can trigger an immune response. This is initiated when anti-
gens derived from a genetically distinguishable member of the
same species are recognised as foreign, a process termed
‘allorecognition’. Subsequent immune cell activation and elic-
itation of an immune response directed towards alloantigen-
expressing cells ultimately results in graft-versus-host disease
(GvHD) following bone marrow transplantation (BMT) or
graft rejection following solid organ transplantation.

Organ transplantation is inherently an invasive surgical ap-
proach which is inevitably accompanied by ischemia/
reperfusion injury, inflammation and tissue damage [1].
Consequently, innate immune responses such as the comple-
ment cascade [2, 3] are initiated which contribute to graft
rejection [4]. However, studies conducted in neonatally
thymectomised [5] and irradiated adult [6–8] mice have dem-
onstrated that the most deleterious immune responses are driv-
en by recipient-derived T cells. These cells have been
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described to recognise alloantigens via three pathways of
allorecognition: the direct, indirect and semi-direct pathways.
The direct pathway is initiated by donor-derived antigen-pre-
senting cells (APC) which present allogeneic major histocom-
patibility complex (MHC)-peptide complexes to recipient T
cells. Conversely, the indirect pathway relies on recipient-
derived APCs which uptake, process and present allopeptides
in the context of self-MHC class II. More recently, the semi-
direct pathway was described in which recipient-derived
APCs present both acquired, intact allo-MHC-peptide com-
plexes (direct) and allopeptides in the context of self-MHC
(indirect). In this review, we focus on the direct and semi-
direct pathways of allorecognition.

Premise of Direct Allorecognition

The unusual strength and vigour of direct alloimmune responses
was first demonstrated by Bain et al. [9] through the use of
in vitro-mixed leukocyte reactions (MLR). It was discovered that
mixing leukocytes from two genetically unique individuals re-
sulted in significant leukocyte activation, a phenomenon which
was not observed by mixing leukocytes from genetically identi-
cal individuals. Subsequent in vivo studies demonstrated that
similarly aggressive immune responses were observed in rodents
which received allogeneic transplants [10]. This vigorous re-
sponse was attributed to the presence of donor-derived ‘passen-
ger’ leukocytes which were co-transferred into the recipient dur-
ing the transplant procedure. Depletion of these cells from thy-
roid [11] or pancreatic [12] allografts, achieved by culturing the
allografts in vitro to facilitate passenger leukocyte egression, re-
sulted in a prolonged graft survival. In the former study, this
prolongation was reversed by the infusion of donor peritoneal
exudate cells (PEC), suggesting that recipient T cells with direct
allospecificity must be activated by donor-derived APCs in order
to destroy transplanted allografts [11].

Subsequent investigations performed by Lechler and
Batchelor [13, 14] demonstrated that the principle ‘passenger’
leukocytes responsible for activating recipient T cells were den-
dritic cells (DC). In these studies, rat kidneys were ‘parked’ in
intermediate recipients to deplete passenger leukocytes, prior to
engraftment in a terminal recipient. The outcome was prolonged
allograft survival which was prevented by the repletion of donor
DCs, implicating a significant role for these cells in acute allo-
graft rejection. Additional studies proceeded to suggest that these
DCs prime and activate recipient T cells in secondary lymphoid
tissues [15, 16].

Models Explaining Direct Allorecognition

The strength and vigour with which direct alloimmune re-
sponses are elicited may be explained by the fact that all indi-
viduals have a high-precursor frequency of T cells specific for
allogeneic MHC-peptide complexes. Approximately 0.01 %

of the cells in a standard T cell repertoire are capable of
responding to a specific foreign peptide presented by a self-
MHCmolecule. However, 1–10% of these Tcells can engage
in tac t fo re ign MHC-pep t ide complexes (d i r ec t
allorecognition) [17•]. Two models have been proposed to
account for this unusually high frequency of Tcells with direct
allospecificity, each of which places an emphasis on the dif-
ferent components which comprise an MHC-peptide com-
plex: the allopeptide and the allo-MHC molecule.

Peptide-Centric Model

The first model focuses on the contribution of the allopeptide
bound in the groove of the allo-MHC. It is believed that spe-
cific structural components of self-MHCmolecules are ‘mim-
icked’ by allo-MHCmolecules. As such, self-restricted Tcells
dock andmake contacts with allo-MHCmolecules in the same
manner as they would with self-MHC molecules. However,
the binding groove of the self- and allo-MHC molecules is
vastly different, thus the peptides presented by each is signif-
icantly different, despite being derived from similar endoge-
nous proteins.

Given the random nature with which TCRs are genetically
rearranged, a standard repertoire comprises Tcells with a wide
spectrum of specificities. As such, the recognition frequency
of a self-MHC presenting a specific foreign peptide is low:
often, a very small proportion of T cells engage a specific
MHC-peptide complex. However, in this model, it is not one
foreign peptide which is presented by allo-MHC molecules
but instead, an entire pool of foreign peptides thus donor-
derived cells will activate a variety of recipient T cells with a
range of specificities. This hypothesis was initially proposed
by Matzinger and Bevan in 1977 and is termed the ‘multiple
binary complexes’ hypothesis (Fig. 1a) [18].

In 1988, Eckels et al. [19] demonstrated the importance of
allopeptides in the activation of T cells with direct allospecificity.
In this study, HLA-DR1-restricted alloreactive Tcell clones were
co-cultured with allogeneic APCs in the presence and absence of
a competing peptide. T cell proliferation induced by the presen-
tation of allopeptides in the context of HLA-DR1 was abrogated
when the allopeptides were displaced by competing influenza
haemagglutinin-based peptides. Subsequently, Panina-
Bordignon et al. [20] demonstrated that APC presentation of
peptides derived from endogenous proteins contributes signifi-
cantly to the activation of alloreactive T cell clones. Of 1489
CD4+ T cell clones analysed, 6.6 % specifically responded to
APCs which presented human serum albumin (HSA)-derived
peptides but not foetal calf serum (FCS)-derived peptides, despite
the peptides being presented by the same HLA-DR molecule.
Conversely, it has been shown that presentation of allo-MHC
molecules lacking allopeptides, achieved through the use of
MHC mutants [21] or acid-treatment of target cells [22], triggers
a limited response from alloreactive T cells. In the latter study, T
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cell responses were restored by the addition of synthetic
allopeptides. Furthermore, various groups have described
allopeptide sequence consensuses [23] and have demonstrated
that through disrupting the binding of these specific allopeptides,
there is a loss of response from alloreactive T cells [24]. More
recent studies have employed point mutation approaches to de-
termine which motifs in a TCR are important for eliciting T cell
activation and have concluded that TCR-peptide interactions are
fundamental in direct allorecognition [25].

MHC-Centric Model

The second model focuses on the fact that allo-MHCs are
structurally different to self-MHCs. Whilst the majority of
elements recognised by a TCR are conserved across various

MHC subtypes [26], specific amino acid polymorphisms pres-
ent in the allo-MHC molecule may modify the manner by
which a self-restricted TCR docks with an MHC, irrespective
of the peptide presented.

In this model, it is suggested that fundamental differences
exist between self- and allo-MHCs in specific polymorphic
residues which are exposed to potential docking TCRs.
These residues cause the MHC-peptide complex to be
recognised as foreign, thus the peptide presented stabilises
the MHC-peptide complex but has little influence in the rec-
ognition process. Additionally, the affinity with which this
TCR:allo-MHC interaction occurs may have implications in
the alloresponse observed. Whilst T cells are selected to bind
self-MHC-peptide complexes with a low affinity, it is possible
that they would bind allo-MHC-peptide complexes with a
high affinity, suggesting that a high affinity cross-reaction is
responsible for the allorecognition observed. Furthermore, the
high density of ligands expressed by donor APCs can further
facilitate the activation of alloreactive T cells. This hypothesis
is termed the ‘high determinant density’ hypothesis and was
originally proposed by Bevan in 1984 (Fig. 1b) [27].

In 1989, Schneck et al. [28] developed a peptide which
mimicked a specific region of the MHC class I molecule
H-2Kb. In the presence of this peptide, the cytotoxic activity
of H-2Kb-specific CD8+ Tcells against H-2Kb target cells was
inhibited, demonstrating the importance of the TCR:MHC
interaction in this alloresponse. Subsequently, and in contrast
to the results ofWang et al. [22], Smith et al. demonstrated in a
mouse setting that removal of peptides bound to MHC mole-
cules through the use of acid washing did not perturb the
ability of T cells to bind and react to allo-MHC molecules
[29]. Lombardi et al. [30] proceeded to present corresponding
findings in a human T cell setting. In this study, a site-directed
mutagenesis approach was employed to generate genetically
altered HLA-DR molecules which were transfected into mu-
rine DAP.3 cells. Using these artificial APCs, it was demon-
strated that specific mutagenesis of TCR contact regions in the
MHC molecule resulted in inhibition of T cell binding and
subsequent effector responses. As such, it was evident that
specific sites of the allo-MHCmolecule were critical for direct
allorecognition to occur. These findings were later confirmed
by Villadangos et al. who employed a similar approach whilst
mutating HLA-B27 [31].

Conundrum of Allorecognition

T cell progenitors must undergo a stepwise ‘education’ pro-
cess in the thymus to develop into mature Tcells. Thymocytes
expressing a TCR capable of recognising peptides presented
in the context of self-MHC molecules are ‘positively select-
ed’, whilst thymocytes that recognise self-MHC-peptide com-
plexes with a high affinity are ‘negatively selected’. As such,

Fig. 1 Comparison of the two principle theories explaining the high
frequency of T cells with direct allospecificity. a Multiple binary
complexes hypothesis. The elements of the allogeneic MHC molecule
which interact with the TCR mimic those which are found in self-MHC
molecules. As such, it is the presence of the allopeptide (red) which drives
recognition of the allogeneic MHC-peptide complex. Allograft
presentation of various allopeptides in the contexts of MHC molecules
which are perceived as ‘self’ results in the activation of a range of T cells,
each expressing a TCR specific for a different MHC-peptide complex. b
High determinant density hypothesis. Structural differences in the
polymorphic regions of the allo-MHC molecule are detected by the
TCR (red). The high density of cognate allo-MHC molecules which
possess these polymorphisms on donor-derived APCs facilitates the
efficient activation of recipient T cells which recognise the allogeneic
MHC molecule with a low, medium or high affinity
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the mature T cells which results from this process are able to
recognise self-MHC-peptide complexes with a low affinity.

The existence of this process reveals a conundrum: why do
self-restricted T cells [32] recognise allo-MHC-peptide com-
plexes? Studies have demonstrated that cross-reactivity between
self and allogeneic MHC-peptide complexes is the key for this
mode of allorecognition. In other words, T cells specific for pep-
tide ‘x’ presented by self-MHC ‘A’ are also able to recognise
peptide ‘y’ presented by allo-MHC ‘B’ [33]. Studies supporting
this have demonstrated that LFA-3+ [34] and CD45RO+ [35]
memory T cells primed against peptide ‘x’ presented by self-
MHC ‘A’ also respond to allo-MHC-peptide complexes (peptide
‘y’ presented by allo-MHC ‘B’). Furthermore, these cross-
reacting memory T cells comprise a significant proportion of
the total T cells which respond in a direct manner. This cross-
reactivity concept was further accentuated by Lombardi et al. in
1989 [36]. In this study, human alloreactive T cell clones which
were specific for HLA-DR1 were co-cultured with autologous
APCs presenting Candida albicans-derived antigens in the con-
text of HLA-DR4/HLA-DR13. Half of the alloreactive T cell
clones analysed responded in these co-cultures, suggesting that
cells which were capable of recognising the allo-MHCmolecule
HLA-DR1 had previously been activated by APCs presenting
self-MHC-peptide complexes.

Structural Importance of TCRs and MHCs

The hypotheses and accompanying functional studies described
have suggested that the attention of T cells with direct
allospecificity is either for the allopeptides or the allo-MHCmol-
ecules. However, further insight into the molecular mechanisms
of these interactions was provided by structural studies which
employed x-ray crystallography. In 1987, Bjorkman et al. first
published the structure of HLA-A2 [37]. Subsequent studies per-
formed with HLA-A2 [38] and HLA-B27 [39] suggested specif-
ic residues which were important for allorecognition. However,
significant progress in this field was not made until 1996 when
co-crystals containing a TCR interacting with an MHC-peptide
complex were generated [40, 41]. These studies confirmed for
the first time that TCRs bindMHC-peptide complexes in a diag-
onal orientation, demonstrating that both the MHC and the pep-
tide are recognised. Specifically, the variable Vα domain of the
TCR positions above the N-terminal half of the peptide and the
Vβ domain locates above the C-terminal half of the peptide [42,
43]. This places an emphasis on the complementarity-
determining region (CDR)3 loops of the TCR [44], the most
variable region of the TCR, for recognising the peptide whilst
the CDR1 and CDR2 loops primarily interact with the MHC.

These studies accentuate the plasticity with which a TCR is
able to cross-react and engage a variety of different MHC-
peptide complexes [45, 46]. Indeed, this TCR degeneracy
(ability of a single TCR to engage multiple MHC-peptide
complexes) has fundamental ramifications in that it allows a

finite number of T cells to recognise a potentially infinite
number of MHC-peptide complexes [46, 47]. Although vari-
ous theories exist to explain this degeneracy [48], it is clear
that the ability of a TCR to change conformation upon engage-
ment of a cognate MHC-peptide complex is paramount [42].

In 2007, Colf et al. [49] demonstrated that whilst a single
TCR could cross-react to recognise self-MHC and allo-MHC
molecules, different TCR conformations were required to ac-
complish this. The structure of the mouse-based TCR ‘2C’
was compared when engaged with the self-MHC-peptide
complex H2Kb-dEV8 and the allo-MHC-peptide complex
H2Ld-QL9 [50]. Genetic manipulation of the CDR3α to yield
a high-affinity variant of the 2C TCR did not influence the
orientation with which the allo-MHC-peptide complex H2Ld-
QL9 was bound. As such, interrupting the CDR3α-peptide
interaction had little effect on the binding of the TCR to the
allo-MHC-peptide complex, suggesting an MHC-centric
model may be prevalent in this setting [50].

Conversely, structural data has also suggested a crucial role
for allopeptides in driving direct allorecognition. Studies by
Reiser et al. [44, 51, 52] conducted using mouse-based TCRs
have detailed key conformational changes which occur in the
CDR3 loops of a TCR upon binding of an allogeneicMHC class
I molecule. Here, the CDR3α loop of the TCR ‘BM3.3’ was
found to adopt different conformations depending on the peptide
presented: presentation of the ‘pBM1’ peptide caused the
CDR3α loop to fold away from the peptide binding groove
[52] but when the ‘VSV8’ peptide was presented, the CDR3α
loop pointed towards the amino-terminal end of the peptide [51].
Furthermore, given the fact that relatively minor changes were
observed in the CDR1 and CDR2 loops, these results suggest
that the allopeptide is responsible for driving direct
allorecognition [48, 53]. Studies conducted with human TCRs
interacting with HLA-B molecules have also yielded results in
favour of a peptide-dependent direct allorecognitionmodel. It has
been suggested that MHCmolecular mimicry is the basis for the
cross-reactivity observed between self-HLA-B*0801 and allo-
HLA-B*3501 [54] as well as self-HLA-B*0801 and allo-HLA-
B*4402/4405 [55]. In the latter study, the nature with which the
TCR ‘LC13’ interacted with self-HLA-B*0801 and allo-HLA-
B*4405 was remarkably similar; a comparable number of van
der Waals interactions, hydrogen bonds and salt-bridges were
formed in each case. Additionally, despite the fact that drastically
different peptides were presented, very similar contacts were
made by the CDR loops interacting with the self- and allo-
HLA-B molecules.

Overall, the aforementioned high determinant density and
multiple binary complex models provide two explanations for
why T cells with direct allospecificity exist with a high-
precursor frequency. With functional and structural data
supporting both hypotheses, it is likely that in vivo, the high
frequency of direct allorecognition can be attributed to a combi-
nation of these theories.
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Consequences of Direct Allorecognition

Allorecognition typically leads to an effector response in
which CD8+ T cells with direct allospecificity actively kill
donor-derived target cells [56], leading to allograft dysfunc-
tion and failure. Various studies have investigated how recip-
ient graft-specific CD8+ and CD4+ T cells contribute to acute
and chronic transplant rejection [33, 57–60]. For example, in
2000, Pietra et al. [61] investigated the contribution of CD4+ T
cells in acute graft rejection through the use of severe com-
bined immunodeficiency (SCID) and recombination-
activating gene (RAG)-1 deficient mice which lack functional
T and B cells. C57BL/6 heart allografts, which survived in-
definitely in SCID mice, were acutely rejected (mean survival
time (MST) of 12 days) when BALB/c CD4+ T cells were
adoptively transferred on the day of transplant. Conversely,
heart allografts which lacked donor C57BL/6 MHC class II
molecules (C2D donor mice) were not rejected (7/8 allografts
survived >60 days), demonstrating that CD4+ T cells directly
specific for donor MHC class II molecules were necessary for
acute allograft rejection.

More recently, Brown et al. [62] further demonstrated the
contribution of recipient CD4+ T cells to allograft rejection
using a fully mismatched kidney transplant model in which
donor APCs were specifically depleted. In this study, one
native kidney of recipient (FVB) mice was replaced with an
allogeneic (C57BL/6 × CBA F1) kidney. In the absence of
treatment, transplanted kidneys were rejected acutely in
40% of cases. However, in recipients which were treated with
an immunotoxin-conjugated antibody specific for donor
MHC class II (I-Ak) to depleted donor APCs, kidney allo-
grafts were completely protected: histological analysis
showed no evidence of rejection and upon removal of the
second native kidney, the function of the transplanted kidney
(blood urea nitrogen score) was found to be intact.

Analysis of blood samples acquired from stable renal
transplant recipients has revealed that recipient CD4+ T
cells with direct allospecificity become hyporesponsive
towards alloantigens and are not deleted [63]. This work
was further extended by demonstrating that that human
CD4+ T cells co-cultured with MHC class II-expressing
thyroid follicular cells (TFC) [64] or epithelial cells [65]
do not proliferate or produce cytokines in the absence of
co-stimulation and are hyporesponsive upon subsequent
challenge with EBV-transformed lymphoblastoid B cell
lines (B-LCL) [66]. Together, these results suggest that
in the absence of donor-derived professional APCs, recip-
ient CD4+ T cells engage MHC class II molecules pre-
sented by transplanted tissue parenchymal cells which
lack co-stimulatory molecules. As a result, these T cells
become anergic [65] or polarised towards a Th2 pheno-
type [64], suggesting that prolonged alloimmune re-
sponses depend on an alternative mode of allorecognition.

Sustaining a Long-Term Direct Alloimmune Response

During a transplant procedure, donor APCs are transferred but
these cells are killed or die over time [56]. As such, it has
historically been believed that the direct pathway of
allorecognition predominates during acute graft rejection.
Furthermore, as previously discussed, in the absence of donor
APCs, T cells with direct allospecificity recognise allo-MHC
presented on the allograft parenchyma which leads to anergy
induction [66].

As previously discussed, Lechler and Batchelor [13, 14]
demonstrated that prolonged rat kidney allograft survival could
be achieved by ‘parking’ the allograft in an intermediate recip-
ient to deplete passenger leucocytes. However, the fact that
these allografts were eventually rejected led to the proposal of
the indirect pathway of allorecognition whereby recipient-
derived APCs consistently sample and present donor antigens
provided by the allograft. As such, the indirect pathway has
been believed to be the main mode of chronic rejection [67].

As antigens acquired from exogenous origins are naturally
presented in the context of MHC class II, it is primarily CD4+

Tcells which recognise alloantigens in an indirect manner, not
CD8+ T cells which are responsible for eliciting cytotoxicity.
Furthermore, efficient CD8+ T cell activation requires help
from CD4+ T cells [60]. As such, it is reasonable to conclude
that a link between the direct and indirect pathways of
allorecognition exists and that CD4+ T cells with indirect
allospecificity facilitate the activation of CD8+ T cells with
direct allospecificity [59, 68]. Theoretically, for this to occur,
two separate APCs should be present: a recipient APC pre-
senting allopeptides indirectly to the CD4+ T cell and a donor
APC presenting antigen directly to the CD8+ T cell. However,
from a practical viewpoint, it is highly unlikely that these two
APC:T cell interactions naturally occur in such close proxim-
ity, leading to a conundrum termed the ‘four-cell conundrum’.
This was resolved by the discovery of APCs which present
intact donor MHC-peptide complexes in a direct manner and
allopeptides in an indirect manner [69–71], the basis of a more
recently described third pathway of allorecognition: the semi-
direct pathway [70].

In a similar manner to the indirect pathway, the semi-direct
pathway relies on recipient-derived APCs which infiltrate the
allograft following engraftment. However, in addition to pre-
senting allopeptides indirectly, these cells acquire intact donor
MHC-peptide complexes from donor-derived cells/tissues, a
phenomenon termed ‘cross-dressing’, thus present allogeneic
MHC-peptide complexes in a direct manner [71]. Indeed, DCs
presenting both donor MHC class I-peptide complexes (direct
presentation) and allopeptides in the context of self-MHC (in-
direct presentation) have been observed following skin [72••],
kidney [73] and heart [74, 75••] transplantation. Through this
pathway, direct alloimmune responses can continue long after
donor-derived APCs have died, but the extent to which this
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pathway contributes to allograft rejection is not yet known.
Recently, we have shown that after removal of the direct path-
way and in the absence of cross-presentation, acquired allo-
MHC-peptide complexes, on recipient DCs, can drive allo-
graft rejection throughout the life-span of the transplant [72].

Targeting T cells with Direct Allospecificity

Over the past few decades, advances in surgical techniques
and the development of modern immunosuppressive regimens
have enabled transplantation of cells/organs to become a via-
ble treatment option for a plethora of different conditions.
Although the mechanisms by which these immunosuppres-
sive drugs function are not completely understood, it is be-
lieved their benefits stem through the suppression of T cells
with direct allospecificity [76]. However, drug-based immu-
nosuppression is inherently non-specific and associated with
undesirable side-effects, leaving recipients under consistent
nephrotoxic insult with an increased susceptibility to acquir-
ing infections and developing cancer [76]. As such, various
strategies are currently under investigation to reduce the re-
quirement for these drugs.

Following transplantation, recipient T cells with direct
allospecificity are initially activated by ‘passenger leuko-
cytes’. Given the deleterious consequences of these cells,
strategies have been explored to investigate whether depletion
of these cells from allografts can reduce the intensity of an
initial immune insult. Brown et al. [62] recently achieved this
through the use of a donor MHC class II-specific
immunotoxin-conjugated antibody. As described above, these
authors observed indefinite kidney allograft survival and func-
tion inmice which received this treatment. Additionally, Stone
et al. [77•] have demonstrated that the proportion of passenger
leukocytes in lung allografts can be significantly reduced
through the use of ex vivo lung perfusion (EVLP). These
authors employed a model whereby donor pig lungs are
explanted, perfused ex vivo and then transplanted into recip-
ient pigs. EVLP, which did not severely alter the viability of
the graft, reduced both donor leukocyte egression and recipi-
ent T cell infiltration post-transplantation, suggesting a poten-
tial clinical benefit of passenger leukocyte removal prior to
allograft implantation.

Luo et al. have explored the possibility of inducing donor-
specific transplant tolerance by infusing ethylene
carbodiimide (ECDI)-fixed donor-derived APCs before and
after a transplant procedure [78]. Fuelled by similar ap-
proaches which were applied to treat multiple sclerosis [79]
and diabetes [80] in mice, the authors of this study demon-
strated that indefinite survival (>100 days) of fully mis-
matched islets could be achieved by infusing recipient mice
intravenously with 100 million donor-derived ECDI-treated
splenocytes before and after the islet transplant procedure.
Furthermore, it was demonstrated that CD4+CD25+ Tregs

had a crucial role in tolerance induction. These authors have
also demonstrated that similar levels of tolerance can be
achieved through the use of biodegradable particles (poly
(lactide-co-glycolide); PLG) which present donor antigens
(PLG-dAg) as a substitute for the aforementioned ECDI-
treated splenocytes [81].

As suggested, Tregs play a fundamental role in inducing
tolerance in vivo. Allograft survival is significantly prolonged
by increasing the proportion of Tregs in recipient mice, either
by promoting endogenous Treg expansion [82] or adoptively
transferring ex vivo-expanded Tregs [83, 84]. Similarly, ob-
servational studies performed on human samples have noted a
correlation between the proportion of Tregs and allograft sur-
vival [85, 86]. These studies paved the way for phase I/II
clinical trials which are currently investigating the safety and
efficacy of polyclonal Treg therapy in kidney (The ONE
Study), liver (ThRIL) and bone marrow transplant recipients
[87]. Furthermore, we [88•, 89] and others [90] have demon-
strated that Tregs with direct allospecificity are superior to
polyclonal Tregs at prolonging allograft survival in vivo. In
these studies, human Tregs with direct allospecificity were
preferentially expanded using allogeneic DCs [88•] or B cells
[89, 90]. Using human skin xenograft transplant models, di-
rect allospecific Tregs were shown to inhibit direct
alloimmune-mediated skin injury significantly more effective-
ly than polyclonal Tregs. However, we have also observed in a
mouse setting that Tregs with direct allospecificity alone are
insufficient to prolong the survival of heart allografts [91]. To
achieve this, Tregs required both direct and indirect
allospecificity, suggesting that it is necessary to block both
direct and indirect allospecific Teffs in order to reduce allo-
graft damage in this setting. Given the superior efficacy of
Tregs with direct allospecificity, compared to polyclonal
Tregs, the safety and efficacy of these cells is currently being
assessed clinically in kidney (DART as part of The ONE
Study: NCT02244801) and liver (deLTa: NCT02188719 and
NCT01624077) transplant recipients.

Conclusions

The mechanisms of direct allorecognition have puzzled im-
munologists for decades. Why self-restricted T cells recognise
allo-MHC-peptide complexes and with a high-precursor fre-
quency remain a mystery. Theories proposed to offer an ex-
planation for these conundrums attribute the phenomenon of
direct allorecognition to either the presence of allopeptides or
allo-MHC molecules. Both theories are supported by func-
tional and structural data, suggesting that in vivo, both
allopeptides and allo-MHC molecules are responsible for
driving direct allorecognition. For many decades, the direct
pathway of allorecognition was believed to be solely respon-
sible for early alloimmune-mediated rejection. However, the
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more recent discovery of the semi-direct pathway by our
group has demonstrated how rejection mediated by T cells
with direct allospecificity can be sustained long-term. As
such, various strategies are currently being explored as poten-
tial means of limiting direct allorecognition and inducing
tolerance.
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