115 research outputs found

    Mechanically assisted electrochemical degradation of alumina-TiC composites

    Get PDF
    Alumina-TiC composite material is a tough ceramic composite with excellent hardness, wear resistance and oxidation resistance in dry and high-temperature conditions. In aqueous conditions, however, it is likely to be electrochemically active facilitating charge transfer processes due to the conductive nature of TiC. For application as an orthopedic biomaterial, it is crucial to assess the electrochemical behavior of this composite, especially under a combined mechanical and electrochemical environment. In this study, we examined the mechanically assisted electrochemical performance of alumina-TiC composite in an aqueous environment. The spontaneous electrochemical response to brushing abrasion was measured. Changes in the magnitude of electrochemical current with abrasion test conditions and possible causal relationship to the alteration in surface morphology were examined. Results showed that the alumina matrix underwent abrasive wear with evidence of microploughing and grain boundary damage. Chemical analysis revealed TiO2 formation in the abraded region, indicating oxidation of the conductive TiC domain. Furthermore, wear debris from alumina abrasion appeared to affect reaction kinetics at the composite-electrolyte interface. From this work, we established that the composite undergoes abrasion assisted electrochemical degradation even in gentle abrasive conditions and the severity of degradation is related to temperature and conditions of test environment

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    Non-thermal emission processes in massive binaries

    Full text link
    In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy and Astrophysics Review. Astronomy and Astrophysics Review, in pres

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Self-Similar Solutions for Viscous and Resistive ADAF

    Full text link
    In this paper, the self-similar solution of resistive advection dominated accretion flows (ADAF) in the presence of a pure azimuthal magnetic field is investigated. The mechanism of energy dissipation is assumed to be the viscosity and the magnetic diffusivity due to turbulence in the accretion flow. It is assumed that the magnetic diffusivity and the kinematic viscosity are not constant and vary by position and α\alpha-prescription is used for them. In order to solve the integrated equations that govern the behavior of the accretion flow, a self-similar method is used. The solutions show that the structure of accretion flow depends on the magnetic field and the magnetic diffusivity. As, the radial infall velocity and the temperature of the flow increase, and the rotational velocity decreases. Also, the rotational velocity for all selected values of magnetic diffusivity and magnetic field is sub-Keplerian. The solutions show that there is a certain amount of magnetic field that the rotational velocity of the flow becomes zero. This amount of the magnetic field depends on the gas properties of the disc, such as adiabatic index and viscosity, magnetic diffusivity, and advection parameters. The solutions show the mass accretion rate increases by adding the magnetic diffusivity and in high magnetic pressure case, the ratio of the mass accretion rate to the Bondi accretion rate decreases as magnetic field increases. Also, the study of Lundquist and magnetic Reynolds numbers based on resistivity indicates that the linear growth of magnetorotational instability (MRI) of the flow decreases by resistivity. This property is qualitatively consistent with resistive magnetohydrodynamics (MHD) simulations.Comment: 18 pages, 3 figures, accepted by JA&

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Health Services Utilization, Work Absenteeism and Costs of Pandemic Influenza A (H1N1) 2009 in Spain: A Multicenter-Longitudinal Study

    Get PDF
    Background: The aim of this study was to estimate healthcare resource utilization, work absenteeism and cost per patient with pandemic influenza (H1N1)2009, from its beginning to March 2010, in Spain. We also estimated the economic impact on healthcare services. Methods and Findings: Longitudinal, descriptive,multicenter study of in- and outpatients with confirmed diagnosis of influenza A (H1N1) in Spain. Temporal distribution of cases was comparable to that in Spain. Information of healthcare and social resources used from one week before admission (inpatient) or index-medical visit (outpatient) until recovery was gathered. Unit cost was imputed to utilization frequency for the monetary valuation of use. Mean cost per patient was calculated. A sensitivity analysis was conducted, and variables correlated with cost per patient were identified. Economic impact on the healthcare system was estimated using healthcare costs per patient and both, the reported number of confirmed and clinical cases in Spain. 172 inpatients and 224 outpatients were included. Less than 10% were over 65 years old and more than 50% had previous comorbidities. 12.8% of inpatients were admitted to the Intensive Care Unit. Mean length of hospital stay of patients not requiring critical care was 5 days (SD =4.4). All working-inpatients and 91.7% working-outpatients went on sick leave. On average, work absenteeism was 30.5 days (SD=20.7) for the first ones and 9 days (SD= 6.3) for the latest. Caregivers of 21.7% of inpatients and 8.5% of outpatients also had work absenteeism during 10.7 and 4.1 days on average respectively. Mean cost was J6,236/inpatient (CI95%=1,384-14,623) and J940/outpatient (CI95% =66-3,064). The healthcare economic burden of patients with confirmed influenza was J144,773,577 (IC95% 13,753,043-383,467,535). More than 86% of expenditures were a result of outpatients" utilization. Conclusion: Cost per H1N1-patient did not defer much from seasonal influenza estimates. Hospitalizations and work absenteeism represented the highest cost per patient

    Climate Change Impact on Neotropical Social Wasps

    Get PDF
    Establishing a direct link between climate change and fluctuations in animal populations through long-term monitoring is difficult given the paucity of baseline data. We hypothesized that social wasps are sensitive to climatic variations, and thus studied the impact of ENSO events on social wasp populations in French Guiana. We noted that during the 2000 La Niña year there was a 77.1% decrease in their nest abundance along ca. 5 km of forest edges, and that 70.5% of the species were no longer present. Two simultaneous 13-year surveys (1997–2009) confirmed the decrease in social wasps during La Niña years (2000 and 2006), while an increase occurred during the 2009 El Niño year. A 30-year weather survey showed that these phenomena corresponded to particularly high levels of rainfall, and that temperature, humidity and global solar radiation were correlated with rainfall. Using the Self-Organizing Map algorithm, we show that heavy rainfall during an entire rainy season has a negative impact on social wasps. Strong contrasts in rainfall between the dry season and the short rainy season exacerbate this effect. Social wasp populations never recovered to their pre-2000 levels. This is probably because these conditions occurred over four years; heavy rainfall during the major rainy seasons during four other years also had a detrimental effect. On the contrary, low levels of rainfall during the major rainy season in 2009 spurred an increase in social wasp populations. We conclude that recent climatic changes have likely resulted in fewer social wasp colonies because they have lowered the wasps' resistance to parasitoids and pathogens. These results imply that Neotropical social wasps can be regarded as bio-indicators because they highlight the impact of climatic changes not yet perceptible in plants and other animals
    • …
    corecore