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Abstract. Alumina-TiC composite material is a tough ceramic composite with 

excellent hardness, wear resistance and oxidation resistance in dry and high-

temperature conditions. In aqueous conditions, however, it is likely to be 

electrochemically active facilitating charge transfer processes due to the 

conductive nature of TiC. For application as an orthopedic biomaterial, it is 

crucial to assess the electrochemical behavior of this composite, especially 

under a combined mechanical and electrochemical environment. In this study, 

we examined the mechanically assisted electrochemical performance of  

alumina-TiC composite in an aqueous environment. The spontaneous 

electrochemical response to brushing abrasion were measured. Changes in the 

magnitude of electrochemical current with abrasion test conditions and 

possible causal relationship to the alteration in surface morphology were 

examined. Results showed that the alumina matrix underwent abrasive wear 

with evidence of microploughing and grain boundary damage. Chemical 

analysis revealed TiO2 formation in the abraded region, indicating oxidation 

of the conductive TiC domain. Furthermore, wear debris from alumina 

abrasion appeared to affect reaction kinetics at the composite-electrolyte 

interface. From this work, we established that the composite undergoes 

abrasion assisted electrochemical degradation even in gentle abrasive 

conditions and the severity of degradation is related to temperature and 

conditions of test environment. 
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1 Introduction 

Metal alloys such as Ti-6Al-4V and CoCrMo, known for their biocompatibility and 

mechanical strength, are common biomaterials for total hip replacements (THR) 

[1]. The surface of these metallic biomaterials often forms a passive oxide film 

providing resistance against corrosion or electrochemical degradation. 

Electrochemical degradation is a charge-transfer process in which metallic 

materials react and/or interact with the aqueous environment. Such a process always 

includes oxidation of metallic components and the concomitant reduction of active 

species in the aqueous environment somewhere else on the implant surface. 

Whether an electrochemical reaction will occur or not under certain given 

conditions is governed by its thermodynamic favorability (Gibbs free energy of 

reaction, ∆G) which is a function of the type and state of reactants, surface property, 

reaction kinetics, chemical species and their concentration, and temperature, among 

others [2]. 

The passive oxide film on metal alloys is typically a few nanometers thick and 

provides protection against the dissolution of metals into metal ions and electrons 

when exposed to aqueous environments. High mechanical loads and relative motion 

between two contacting surfaces of articulating load-bearing joints could cause 

disruption of this oxide film that exposes the underlying metal alloy resulting in 

oxidation and the release of metal ions into the surrounding synovial fluid [3,4,5]. 

The released metal ions can possibly illicit inflammatory responses, leading to 

osteolysis and eventual aseptic implant loosening from failure of the 

osteointegration process [6, 7].  

Mechanically assisted electrochemical degradation is an electrochemical process 

triggered by a mechanical condition such as abrasion, micromotion or fretting 

between two articulating surfaces, leading to damage of the protective oxide film. 

The undesirable electrochemical activity of the biomaterial may be compounded by 

the release of wear debris that can further damage the protective oxide film and 

compromise the integrity of the implant surface. In tribology terms, it is often 

regarded as a tribo-electrochemical wear process.  

Ceramic biomaterials are known to provide superior mechanical strength, wear 

resistance, hardness, chemical inertness than their metallic counterparts [8,9]. For 

example, alumina-based ceramic composites demonstrate reduced friction as 

articulating joints and improved wear resistance compared with metal-metal or 

metal-polymer combinations [10]. With a Vicker’s hardness of more than 2000, 

alumina (Al2O3) can be polished to a smooth surface. It possesses high wettability 

providing better adhesion to lubricating fluid, enabling it to have a much lower wear 

rate as articulating components, some 0.025 µm/yr to 4 µm/yr in comparison with 
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100 µm/yr for metal-polyethylene articulating pairs [1]. Alumina is also one of the 

most thermodynamically stable oxides of aluminum and is less susceptible to 

degradation by usual oxidation making it highly biocompatible [11]. 

There have been many advances in alumina manufacturing processes since the 

1970s. Today alumina used for total hip arthroplasties has fewer impurities, smaller 

grain sizes, higher density and improved fracture toughness (by the addition of 

zirconia and other oxides) [10, 12]. However, due to their inherent brittleness, 

ceramics are not able to sustain high impact or non-uniform loads [1] and show little 

to no plastic deformation under extreme mechanical situations, and they are prone 

to micro-fracture under abrasive conditions. The resulting fragments or debris, even 

if not harmful to the host tissues, could act as third body particles to accelerate wear 

damage. Some studies have shown prominent inflammatory responses to ceramic 

wear debris [13,14] requiring revision surgeries due to aseptic loosening for 

ceramic-on-ceramic hip prosthesis [15].  

The intrinsic brittleness of alumina can be reduced by the addition of hard 

reinforcements like metal carbides, nitrides and oxides. Monolithic alumina when 

enhanced by metal refractory ceramic reinforcements like titanium carbide (TiC), 

titanium carbonitride (Ti(C,N)), tungsten-titanium composite carbide ((W,Ti)C) 

yield a composite with increased flexural strength, fracture toughness, hardness and 

an improved friction coefficient [16,17,18]. The alumina-TiO2 nanocomposite 

exhibited lower wear volume and better mechanical properties with a 10 mol% TiO2 

addition [19]. Likewise, mechanical properties and wear behavior of alumina-TiN 

as a potential biomaterial has been explored too [8].  Titanium carbide (TiC) added 

to alumina increases hardness, toughness and more importantly wear resistance of 

just plain alumina [18,20]. Due to superior hardness, TiC coatings on titanium 

substrates enhance resistance to tribochemical wear and offer corrosion resistance 

to an underlying metal substrate. It also improves osseointegration by stimulating 

the growth of osteoblasts and their proliferation, offering a biocompatible interface 

to metallic or polymer substrates [21]. 

Besides improvement in mechanical and wear properties of alumina by the 

transition metal carbides and nitrides, it is important to consider the electrochemical 

behavior of a reinforcing material when evaluating chemical and tribological 

stability of an alumina composite. Even alumina, although an insulator [22], does 

not participate in the electrochemical processes, studies have shown that its wear 

resistance decreases in an aqueous environment due to its hydrophilic nature by 

reacting with water to form aluminum hydroxide in basic and acidic environments 

at elevated temperatures [23,24]. Moreover, these transition metal refractory 

ceramics mentioned earlier demonstrate metal-like conductivity, enabling charge 

transfer during electrochemical reactions [25-28], hence electrical and chemical 

implications of their additions to alumina need to be carefully assessed. 

Besides its extreme hardness, TiC is a conductive ceramic with resistivity of 

0.003-0.008 Ω-m (vs Cu -1.72x10-8 Ω-m) and can partake in electrochemical 

processes in a chemical environment [22]. TiC, when used as reinforcement for 

alumina to improve wear resistance, retains its conductive nature [20] and this 

property is in fact favorable in magnetic recording disk drive application where the 
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metal-like conductivity of TiC is beneficial to dissipate charge build up due to 

frictional contact [29]. Electrochemical nature of TiC was highlighted in studies 

[30, 31] that have shown anodic dissolution of TiC in aggressive chemical 

conditions and [32] where TiC nanowires exhibited enhanced electrocatalytic 

properties allowing facile electron transfer and redox activity. It is known from a 

study [29] that alumina-TiC composites have high oxidation resistance in air and 

nitrogen environments for temperatures up to 350˚C. However, alumina-TiC 

composites also undergo oxidative wear in dry conditions. Bare alumina-TiC has 

been observed to release CO2 as a byproduct of tribochemical wear of TiC at 120 

˚C under dry sliding wear [33] and that oxygen chemisorption and carbon oxidation 

is catalyzed by alumina-TiC. Such a tribochemical wear mechanism is likely to be 

enhanced under an aqueous environment that allows for continuous electrochemical 

interactions. 

Considering improved mechanical strength, wear resistance of alumina-TiC and 

biocompatibility of TiC itself, alumina-TiC composites may be regarded as an 

appealing biomaterial for load bearing implants. However, the tendency of TiC to 

facilitate charge transfer in electrochemical processes and reactivity of alumina in a 

wet environment pose a need to evaluate the electrochemical behavior of alumina-

TiC composites. Hence the electrochemical activity of alumina-TiC in an aqueous 

chemical environment, especially when compounded by destructive mechanical 

processes like high impact loads, abrasion, cyclic fatigue, frictional wear, needs to 

be evaluated.  Such an evaluation would enable a better material design of the 

ceramic composite for biomedical applications.  

In this study, we focus our efforts on investigating the effect of TiC 

reinforcement on the electrochemical degradation of alumina-TiC composites. We 

aim to elucidate the degradation mechanism involved by studying the 

electrochemical response of alumina-TiC composites when it is abraded in an 

aqueous environment and assess corresponding alterations in surface chemistry and 

appearance with quantitative and qualitative techniques, respectively. The 

experimental methods employed to understand the interplay of mechanical and 

electrochemical processes are as follows: 

 

Table 1-Experimental methods used in the study 

 Tests 

Quantitative/Semi-quantitative i) Electrochemical Methods: 

a) Open circuit current (ZRA) 

b) Electrochemical Impedance 

Spectroscopy 

 ii) Chemical analysis: 

     a) Inductively coupled plasma 

mass spectrometry (ICP-MS) 

b) Xray Photoelectron 

Spectroscopy (XPS) 
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Qualitative Scanning Electron Microscopy 

(SEM) 

 

 

2 Methods and Materials 

To examine the effect of gentle abrasion on the electrochemical behavior of   

alumina-TiC composites, we built an experimental apparatus allowing us to abrade 

the composite with a brush in an aqueous environment while simultaneously 

measuring electrochemical response from the composite. Doing so will enable us to 

study the spontaneous oxidative processes induced by brushing abrasion and 

establish interdependence among different parameters of abrasion, including 

temperature, brushing acceleration and speed, electrochemical potential and 

current. Further characterization of the degradation of alumina composites by 

brushing abrasion is achieved by comparing microstructural damage due to abrasion 

in a dry environment.    

2.1 Brushing abrasion setup 

The setup built for the brushing tests is shown in Fig.1. Its center piece is a 

motorized overhead stirrer (Eurostar power control-visc, IKA Works, Wilmington, 

NC) for rotational-motion of brush about the vertical axis. Brushing abrasion of an 

alumina-TiC composite sample is accomplished with a nylon brush, attached to the 

end of the motor shaft. The acceleration and speed of the stirrer motor is controlled 

using the labworldsoft 5 program (IKA Works, Wilmington, NC). This setup also 

simultaneously measures the electrochemical response of alumina-TiC composites 

to brushing abrasion with a potentiostat (VersaStat MC, Princeton Applied 

Research, Oak Ridge, TN). A heating unit in the set up comprises of a J-type 

thermocouple, heating tape (BIH051020L, BriskHeat, Columbus, OH) and a digital 

temperature controller ITC-106 (Inkbird, Shenzhen, China) is used to control the 

temperature of the test solution (electrolyte) throughout the duration of a test. The 

contact load between the brush and the composite sample is monitored and 

controlled using a force sensor (flexiforce sensor: A201, Tekscan, South Boston, 

MA). In a typical brushing test, a nylon brush is brought into contact with the 

surface of the alumina-TiC composite sample and a contact force of 45 gm-f (0.44 

N) is achieved by the force monitoring unit and by adjusting the base plate on linear 

translation stage. This force may fluctuate about this constant set value during 

brushing due to scattered contact of rotating bristles of the brush.  A ramp scheme 
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is designed in the labworldsoft to control the acceleration of the motor from rest to 

a preset maximum brushing speed, governing the rate and degree of abrasion.  

 

Fig. 1. Experiment apparatus set up for brushing abrasion 

2.2 Sample preparation 

For every test, commercially available alumina-TiC (70%/30%) samples, 10×10 

mm in size, were first cleaned ultrasonically for 10 minutes in ethanol followed by 

rinsing in deionized (DI) water. An electrical connection with the composite sample 

was established using a copper tape and the test sample was used as the working 

electrode (WE). All sides of the sample except the top surface and copper tape to 

be exposed to the test solution were coated with lacquer to minimize unwanted 

interferences from copper. The prepared sample was kept at a fixed position on a 

sample holder with its top surface facing up. A nylon brush in the form of a bundle 

of bristles with a polyethylene base was used for brushing about the vertical axis. 

The nylon brush was cleaned by sonicating in ethanol for 10 minutes followed by 

rinsing in DI water.  

2.3 Electrochemical measurements 

Motor control

Versastat in 

ZRA configuration Ground                   

Working Electrode(WE)

Reference Electrode(RE)

Thermocouple
Heating coil

Platinum Mesh 

Al2O3-TiC Sample (WE)

Motor Shaft 

Sample Holder

Flexi-Force Sensor

Calomel Electrode

Test Solution

Stirrer motor

Temperature  

controller

Force Monitoring program

Nylon Brush

Base Plate
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Electrochemical measurements were made using a VersaStat MC. A Saturated 

Calomel Electrode (SCE) was used as the reference electrode (RE), a platinum mesh 

as the counter electrode for potentiostatic (applied potential) and potentiodynamic 

tests and as a ground lead (GND) for open circuit condition (free potential) 

measurements. Micro90 (pH~9.5), a corrosive organic solution diluted to 0.3% 

(vol/vol) in DI water and heated to 75°C, was used as an electrolyte unless stated 

otherwise. To monitor the brushing induced electrochemical current response 

without applying any electrical potential (free potential), a potentiostat set in a Zero 

Resistance Ammeter (ZRA) configuration was used in a three-electrode setting.  

2.4 Brushing abrasion testing 

Before starting the brushing abrasion, the open circuit potential (OCP) of the 

alumina-TiC sample was allowed to stabilize for 10 minutes while recording the 

electrochemical current. Brushing acceleration and speeds were controlled by 

adjusting the ramping times for the stirrer motor to reach maximum abrasion speed 

from rest. Following the brushing test, the composite sample was rinsed with DI 

water and ethanol and stored for surface analysis. 

By using the same test parameters and setup as described above for every run of an 

experiment, a systematic study of brushing abrasion was performed to characterize 

the mechanically assisted degradation of alumina-TiC composites and identify 

factors that affect the degradation process.  

2.4.1 Effect of brushing acceleration and speed 

Since the ramping time to reach maximum speed controls the amount of rotational 

force imparted to the surface features under abrasion, the effect of ramping time 

was studied under three different ramping schemes: 10, 40 and 70 seconds to ramp 

the rotational speed of brush from rest to maximum speed of 800 revolutions per 

minute (rpm). Total test duration was about 17 minutes with 10 minutes for OCP 

stabilization, 5 minutes of brushing, and some remaining time for motion actuation 

and slowdown. Two maximum brushing speeds were used: 500 and 1200 rpm. After 

the brushing tests, the resulting surfaces were imaged and analyzed for 

morphological changes. This set of experiment was designed to correlate 

electrochemical responses with the abrasion ramping time and speed.  

2.4.2 Effect of temperature 
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Temperature is an important factor that governs the thermodynamic favorability of 

electrochemical processes, rate of reaction and conductivity of the test solution. To 

understand the effect of temperature, the prolonged exposure of alumina-TiC 

composites to an aqueous alkaline environment was carried out in a heated (75˚C) 

and room (25˚C) temperature. The total duration of these tests was two hours with 

brushing abrasion for 6 minutes (in three consecutive brushing cycles of 2 minutes 

each). The brushing abrasion parameters were kept the same: a contact force of 45 

grams, ramping time of 10 s, and maximum brushing speed of 800 rpm.  

2.4.3 Effect of environment 

To ascertain if the material degradation mechanism is an abrasion assisted 

electrochemical process and not just a tribological process, brushing abrasion in dry 

conditions (no electrolyte) was also performed. The resulting microstructural 

damage of the dry-test samples was examined and compared with the wet-test 

samples. Aside from the dry and wet difference, other experimental settings were 

kept unchanged at a contact force of 45 grams, ramping time at 10 s, and maximum 

brushing speed of 800 rpm. In this way, the surface damage incurred would be 

mainly due to brushing abrasion because the electrochemical interactions of TiC 

with the aqueous environment were eliminated in dry abrasion. 

2.5 Electrochemical impedance study 

Electrochemical impedance spectroscopy (EIS) tests were undertaken using the 

same setup described earlier to characterize oxide formation and change of sample-

electrolyte interface properties. Impedance scans were taken before and after 

potentiostatic conditions (anodic and cathodic) and abrasion tests in Micro90 at 

75˚C. Potentiostatic tests were performed to verify the propensity and stability of 

the oxide formation particularly on the TiC domain as alumina does not participate 

in the charge transfer processes. The value for the applied potential in potentiostatic 

tests was chosen from active cathodic and anodic regions of potentiodynamic tests 

which coincided with average OCP values (-250 mV vs SCE) observed in free 

potential mode during brushing abrasion. The experimental design for EIS analysis 

is shown in Table 2 below. 

Table 2 – Experimental conditions for EIS study 

Experiment Duration Temperature 
Brushing 

Abrasion 

Applied 

Potential 

vs SCE 

Anodic Biasing 43 minutes 75°C No 250 mV 

Cathodic Biasing 43 minutes 75°C No -250mV 



9 

No Brushing-No 

Biasing 
43 minutes 75°C No No 

Brushing-No Biasing 

10 minutes 

OCP 

stabilization 

+ 30 minutes 

brushing + 3 

minutes to 

restore 

75°C Yes No 

Three runs of impedance test were performed before and after the application of 

each experimental condition listed in Table 2 to study the altered sample-electrolyte 

interface. In every impedance scan, alternating current (AC) perturbation with 

magnitude of 50 mV was applied at open circuit condition in the frequency range 

of 1 Hz - 50 kHz. For brushing abrasion experiments, 10s of ramping time with a 

maximum speed of 800 rpm was applied after 10 minutes of OCP stabilization. 

Charge transfer resistance (Rct), the parameter of interest in this experimental 

design, was obtained with ZView by fitting an equivalent circuit model to the 

Nyquist plot acquired. Any alterations in charge transfer resistance before and after 

a test condition would give us clues about possible changes in oxide film on the TiC 

domain. 

2.6 Surface characterization 

Abrasive alterations in surface morphology were examined through comparison of 

images obtained from Scanning Electron Microscopy (SEM) (SU6600 and S4800, 

Hitachi High Technologies, Tokyo, Japan) for abraded samples and pristine 

samples. Changes caused by different parameters of brushing abrasion tests were 

analyzed. Note that with less energetic secondary electrons reflected from sample 

surfaces, images taken at low kV (0.7 kV) will reveal more superficial information 

than 5 kV, and that at the lower kV, the contrast will be reversed and alumina matrix 

domain will appear as darker regions under 0.7 kV rather than lighter under 5 kV.  

2.7 Chemical analysis 

As the mode of abrasion employed in this study is of gentle nature, to obtain 

measurable alterations in surface chemistry, a much longer duration of brushing 

abrasion was employed. To accelerate the surface chemistry changes by brushing 

abrasion, continuous brushing in heated Micro90 at 1000 rpm (ramping time of 10 
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s) for 2.5 hours was performed following 10 minutes of OCP stabilization. Abraded 

regions were marked under optical microscope for chemical analysis by X-ray 

Photoelectron Spectroscopy (XPS). Elemental scans for titanium were performed 

to observe changes in oxidation states after brushing abrasion. Atomic percentages 

of each element (Ti, C, Al and O) from XPS scans were obtained to gain a 

preliminary understanding of changes in surface chemistry due to the 

electrochemical process activated by brushing abrasion of alumina-TiC. 

 The test solution after brushing abrasion was also analyzed for any traces of 

titanium oxide or alumina particles released as debris during the prolonged 

brushing. ICP-MS (Inductively Coupled Plasma Mass Spectrometry) was employed 

to determine its elemental titanium and aluminum concentration. Untested Micro90 

solution was also analyzed as a control. 

3 Results and Discussion 

3.1 Electrochemical response to brushing abrasion 

Under OCP conditions, the composite shows a baseline current of nearly 1 µA in 

the heated Micro90 environment, suggesting a dynamic electrochemical process on 

the sample surface. These measurable electrochemical interactions signify that the 

electro-active domain of the TiC composite during the OCP stabilizing period 

interacts with the test solution. After OCP stabilization, brushing abrasion results in 

typical ‘passive layer breakdown’ behavior as evident in both the OCP and current 

responses which are commonly observed with metal and metal alloys [3, 34, 35] as 

well as metal-ceramic composites [36]. In response to abrasion after OCP 

stabilization, electrochemical current shows a sharp increase with a concurrent 

negative drop in OCP as shown in Fig. 2, indicating activation of oxidative reactions 

on TiC. The decay of both current and OCP suggests a re-passivation process 

occurring to remedy the disruption of the oxide barrier on the sample surface. This 

re-passivation behavior may not completely form a compact non-porous film due to 

continuing abrasion when the brushing motion is going on.  
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Fig. 2. Typical electrochemical response of alumina-TiC to brushing abrasion 

in Micro 90 at 75°C 

As the brushing stops, the current decays to its original rate of stabilization. Such 

behavior shows that the rate of electrochemical reaction on the TiC domain is 

increased due to brushing abrasion. Parameters like ∆V and ∆I depicted in Fig. 2 

are the differential values of OCP and electrochemical current respectively from 

baseline, that provide a quantitative measure of the electrochemical activity of 

alumina-TiC initiated by abrasion.  

Magnitudes of the electrochemical current and potential vary with brushing 

abrasion parameters like ramping speed and maximum brushing speed. As seen in 

Fig. 3a, current response to brushing with a ramping time of 10s is the highest with 

the greatest average ∆V (0.022V) and ∆I (17.3µA) as plotted in Fig.3b. Clearly, a 

shorter ramping time generates a larger rotational acceleration hence exerting 

greater abrasive forces on a sample surface than a longer ramping time, leading to 

more morphological damage. Similarly, a larger maximum speed generates a higher 

current and causes more surface damage. For example, as seen in Fig. 4a and Fig.4b, 

the case of 1200 rpm maximum speed results in higher delta values for OCP and 

electrochemical current (∆V=0.035 V,∆I=26.19 µA) than the case of 500 rpm 

(∆V=0.017 V, ∆I=17.92 µA). These facts suggest that the abrasion of alumina-TiC 

activates an oxidative electrochemical process, resulting in increased chemical 

interactions with an aqueous environment and the corresponding electrochemical 

response depends on abrasion parameters.  
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Fig. 3. Effect of ramping time on a) Current response to brushing abrasion at 

10 s, 40 s, 70 s and b) Average ∆V and ∆I values for n=3 in Micro90 at 75˚C. 

 
Fig. 4. Effect of maximum brushing speed on a) Current response to abrasion 

at 1200 rpm and 500 rpm and b) Average ∆V and ∆I values for n=3 in 

Micro90 at 75˚C with a ramping time of 10 s. 

 

At elevated temperature of 75˚C, the baseline current and the peak value in the 

electrochemical response curve are much higher than at room temperature, as shown 

in Fig. 5. This indicates that the degradation mechanism triggered by abrasion is an 

electrochemical process involving an oxidation reaction whose thermodynamic 

favorability is enhanced at higher temperatures. Moreover, at a higher temperature, 

the increased conductivity of a solution could also play a role by making more 

charged species available to enable faster reaction kinetics on the TiC domain. 

Among the three brushing cycles, the current response to the first cycle of brushing 

is the highest and successive current responses reduce in magnitude. This reduction 

in current could be attributed to several reasons. It could be due to the hysteresis 

loosening of the bristles after each brushing motion, or it may be due to a loss of 

material by abrasion in each brushing cycle, leading to less brushing contact in 

subsequent brushing cycles. 
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Fig. 5. Effect of temperature on current response to brushing abrasion (3 

cycles) in Micro 90. 

 

3.2 Surface characterization 
 

 

SEM images of the sample surfaces after the abrasion test given in Fig. 6 (a-f) show 

that the abraded samples have been brushed off [37] exhibiting circular ‘ploughing’ 

[38,39,40] marks, likely caused by material removal along a curvilinear track. 

Under a low magnification (at 100X or lower) these marks appear as concentric 

rings, consistent with the rotational brushing trajectory (Fig.6 a-c). At a higher 

magnification, the ploughing marks appear as dark and bright bands. Under closer 

inspections, these dark bands are formed due to a greater amount of surface wear 

than brighter bands.   

The appearance of these circular bands is affected by the way brush bristles 

spread on the sample based on the initial contact force between the sample and brush 

at the beginning of the test. Darker regions show a greater degree of morphological 

damage and material removal, mostly on the alumina domains than the brighter 

band region, in which the alumina exhibited much lesser damage. At a 18000X 

magnification (Fig. 6g), the alumina domain is white and TiC black. In comparison 

with a pristine sample (Fig. 6h), we clearly see the grain boundary wear and material 

removal on the alumina domain on the brushed sample (Fig. 6g).  

Surface damage as observed in Fig. 6 suggests the susceptibility of the alumina-

TiC composite to abrasive wear incurred along with electrochemical activation (Fig. 

2) under gentle abrasion condition. Keep in mind that alumina domains appear white 
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in higher kV SEM images from SU6600 and the TiC domain is black, but the 

contrast reverses in lower kV SEM images from S4800. 

 

 

 
a) 

 
b)  

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Fig. 6. SEM images (SU6600) of alumina-TiC sample after brushing abrasion 

in a heated environment at magnifications of a) 40X, b) 100X, c) 250X, d) 

600X, e) 1200X, and f) 3500X; 18000X images of the microstructure of g) 

Brushed and h) Pristine samples. 

 

 

As seen in Fig.7, the case of a 10 s ramping time which corresponds to the highest 

current response induces the most severe surface damage than the two other slower 

cases. High brushing speed causes a similar outcome: more severe surface damage 

under 1200 rpm than under 500 rpm as shown in (Fig.8). The TiC grain boundaries 
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show more wear giving a smeared boundary appearance [37]. As we see in these 

images, the overall damage is of the same ‘microploughing’ type. The variation of 

brushing abrasion parameters is manifested in the severity of damage induced in 

grain boundary region, with the most severe damage seen for the 10 s case followed 

by 40 s and 70 s cases. Similarly, a lower maximum speed (500 rpm) causes less 

damage than a higher maximum speed (1200 rpm). These revealed relationships 

between electrochemical current response and brushing acceleration and maximum 

brushing speed and the induced surface damage confirm that the degradation 

mechanism is an abrasion assisted electrochemical process and the degree of 

electrochemical interaction of TiC with the environment depends on the magnitude 

of parameters controlling the mechanical process of abrasion. 

 
a) 10s 

 
b) 40s 

 
c) 70s 

Fig. 7. Low kV SEM images (S4800) of alumina-TiC showing differences in 

morphological damage at ramping speeds of a ) 10 s, b) 40 s and c) 70 s to 

maximum brushing speed of 800rpm. 

 
a) 1200 rpm 

 
b) 500 rpm 

Fig. 8. Low kV SEM images (S4800) of alumina-TiC showing differences in 

morphological damage at different maximum brushing speeds of a) 1200rpm 

and b) 500rpm with ramping time of 10 s. 

 

As apparent in Fig.9, grain boundaries are more intact at room temperature and 

alumina domains show much lesser wear in the room-temperature condition than in 
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a heated condition. This morphological damage corresponds well to the current 

responses obtained (Fig.5) at these at two different temperatures.  

 

 
a) Wet-75˚C 

 
b) Wet- Rt 

 
c) Dry-Rt 

Fig. 9. Comparison of SEM images (SU6600) of alumina-TiC composite 

brushed in a) Wet (Micro90) and heated, b) Wet (Micro90) and room 

temperature(Rt) and c) Dry Rt environment 

 

While comparing the surface of dry brushed samples with wet brushed samples, the 

material removal of the alumina domain was much less in the dry brushed samples 

with no damage in the grain boundary region. Damage incurred on alumina domain 

in a wet environment, especially near grain boundary region could be due to a 

greater chemical reactivity of alumina to aqueous environment possibly driven by a 

reaction with water to form hydroxide.  At a higher temperature, not only is the rate 

of electrochemical interactions of TiC with an aqueous environment higher, the 

susceptibility of alumina domain to abrasive wear is also increased. 

3.3 Chemical analysis 

XPS analysis of the brushed samples revealed alterations in surface chemistry 

caused by the oxidative electrochemical process on the TiC domain. Brushed and 

pristine samples showed the similar elemental composition but their atomic 

percentages were different (Table 3). 

 

Table 3. Atomic percentages of brushed and pristine samples from XPS 

measurements 

  Atomic Percent (%) 

Sample/Element  Ti C O Al 

Pristine Average 3.42 38.8433 38.96 18.77 

 Std. Dev 0.98 7.21 3.98 2.37 

Brushed Average 7.01 28.93 47.28 16.77 

 Std. Dev 0.88 2.02 1.23 0.66 
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Statistical significant 

difference 
 p<0.05 p<0.1 p<0.05 

No 

difference 

 

As seen in Table 3, brushed samples show a reduced amount of carbon atoms in the 

scanned regions along with a higher percentage of titanium and oxygen atoms than 

the pristine sample. The altered atomic percentages indicate a loss of carbon atoms 

and acquisition of oxygen on the surface. Further, the regional elemental scans 

plotted in Fig.10 for titanium show the relative percentage of the Ti2p3/2 bonded to 

Ti and the Ti2p 3/2 bonded to oxygen in TiO2, where a normalized count per second 

(cps) is obtained with respect to a common peak at approximately 464.4 eV for both 

samples. 

 
Fig. 10. Elemental scans from XPS analysis for brushed and pristine samples 

 

The pristine sample shows a default TiO2 peak at 458.3 eV with a Ti2p3/2 peak at 

454 eV representing a Ti-Ti bond. For the brushed sample, the number of Ti bonded 

atoms to oxygen increased by almost two times as marked by a higher peak at 458.3 

eV corresponding to Ti2p3/2O2 formation. Thus, chemical analysis through XPS 

suggests abrasion induced electrochemical oxidation of TiC to TiO2 accompanied 

by a release of some carbon-based product in aqueous environments.  

 

Results of the ICP-MS analysis show the presence of aluminum at 57 ppb for 

the tested solution and an undetectable level for the untested solution. For titanium, 

the amount is below the detection limits for both solutions. Higher aluminum 

concentrations in the tested solutions indicate that even with gentle abrasion the 

composite will release wear particles into the test solution, though the precise 

chemical state, e.g., whether alumina or aluminum hydroxide, is unknown. These 



18  

particles may have been immediately swept away from sample surface and brushed 

along the surface. If the loose particles are alumina, they could result in ploughing 

of the sample surface. 

3.4 Electrochemical Impedance data analysis 

Electrochemical impedance spectroscopy data can provide crucial information 

about the state of the oxide film at the composite-solution interface. An oxide film 

formed on a surface often exhibits resistive (frequency-independent) and capacitive 

(frequency dependent) behavior. The Nyquist plot is an effective way to 

characterize the charge transfer processes. In a Nyquist plot (often a semicircle), 

fast kinetic controlled reactions are represented in a high frequency region at the 

left end, and slow diffusion and mass transfer controlled reactions are captured in a 

low frequency region at the right end, as depicted in Fig.11b. With the equivalent 

Randles circuit shown in Fig.11a, containing a constant phase element (CPE), 

charge transfer resistance of oxide films (Rct) and solution resistance (Rs), we can 

determine the various parameters through statistical fitting of the circuit model to 

the Nyquist plots. Here Rs measures the resistance present in solution between the 

reference electrode and working electrode, which is affected by ionic concentration, 

temperature, type of ions and area of electrode. Rct is the resistance of the oxide film 

and electrode-electrolyte interface to charge transfer, and it varies with the type of 

reactions, conditions of oxide film (compact or porous with defects), temperature, 

electrode potential and concentration of reactant species.  CPE is a non-ideal 

representation of capacitive behavior of an electrical double layer on an electrode-

electrolyte interface [41]. For analyzing EIS data, the alumina domain is considered 

not to be participating in the charge transfer processes during electrochemical 

interactions. 
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Fig. 11. a) Equivalent circuit for Randles cell and b) Corresponding Nyquist 

plot. 

 

Rct values before and after each test run in experimental conditions mentioned in 

Table 2 were obtained by fitting of the equivalent circuit model to the inner 

semicircle (high frequency region) of the Nyquist data obtained (Fig.12).  

Frequency dependent behavior of the phase between the applied input and measured 

output signal and impedance at electrode interface in Bode plot (not shown) was 

marked by a one  time constant, which is representative of a single R-C component 

like equivalent circuit for a Randles cell.  
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Fig. 12. Nyquist plot obtained before and after each experiment. a) Anodic 

biasing (250mV vs SCE), b) Cathodic biasing (-250mVvs SCE), c) No 

Brushing-No Biasing, and d) Brushing-No Biasing. 

 

After anodic biasing (250mV vs SCE), the Rct value increased, indicating 

formation of a stable and compact barrier to charge transfer processes verifying the 

tendency of the TiC domain to form TiO2 in an aqueous environment. Similar 

behavior was observed when the sample was just exposed to the test solution under 

a no-biasing condition without brushing abrasion. However, after cathodic biasing 

(-250 mV vs SCE), Rct values reduced. Cathodic potentials are known to deteriorate 

the stability of the TiO2 film [3] that results in an increased amount of 

electrochemical interaction of TiC with the environment and enhanced charge 

transfer rate at the interface. The brushing with a no-biasing condition, which favors 

oxide film formation under undisturbed conditions, produces reduced Rct as seen in 

Fig.13 after brushing abrasion. 
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Fig. 13. Charge transfer resistance Rct values for composite sample before 

and after each experimental test condition in Micro90 at 75˚C (*: significant 

difference (p<0.05) & **: significant difference (p≤0.1). 

 

3.5 Understanding the degradation mechanism of alumina-TiC 

composite 

In the current study, the alumina-TiC composite underwent ‘gentle abrasion’ and 

the fundamental degradation mechanism can be categorized as tribo-

electrochemical wear. The oxidative current response and ploughing damage on the 

composite surface are all indicators of tribo-electrochemical wear induced by 

brushing abrasion. There is no visible wear on TiC grains due to its higher hardness 

[22] and wear resistance. However, TiC likely undergoes oxidation [30,31] to form 

TiO2 and CO2 as per the following reaction: 

 TiC + 4H2O →TiO2 + CO2 (aq) + 8H+
 (aq) + 8e-  (1) 

Upon contact with an aqueous environment and when left undisturbed, a passive 

oxide layer would form on TiC, as the Rct value plotted in Fig.13 indicates. The 

onset of brushing could lead to the removal of micro-asperities on the alumina 

domain along with the rupture of a passive layer on TiC thus activating a burst of 
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electrochemical oxidative processes on conductive TiC as shown in Eq. (1). While 

the TiC domains would repassivate and form TiO2, the ongoing brushing would 

keep the electrochemical interactions of TiC active due to ongoing abrasion of any 

possible oxide layer formed. Under this situation, a stable oxide layer can hardly 

exist. Aside from TiO2 formation, the reduction in carbon percentage in XPS results 

point toward the release of carbon atoms into the solution to form CO2 as per Eq.1 

due to oxidation and replacement of carbon by oxygen in the TiC crystal lattices.  

In general, gentle wear process like the one performed in this study would cause 

less damage [23]. Through qualitative comparison of the surface morphology of 

abraded samples under different environment conditions, it is clear that the alumina 

domain showed a greater amount of material ‘chipped away’ in a wet and heated 

environment than at wet room temperature and dry brushing conditions. Alumina 

experiences tribological and chemical degradation. The hydrophilic nature of 

alumina causes it to readily hydrate to aluminum hydroxide when in contact with 

water and this reaction is thermodynamically more prevalent at higher temperatures 

[42,43]. Strong reactivity to water and resulting greater surface plasticity of alumina 

in a wet environment makes it more susceptible to wear in a wet environment than 

dry conditions [23].  During abrasion, the hydroxide formed that may not be 

adherent is abraded away along with chipping of brittle alumina domain as 

supported by ICP-MS analysis. The low stress during brushing abrasion leaves 

released debris unconstrained [44] and they could be immediately swept away from 

the sample surface and brushed along creating circular trajectories further abrading 

the alumina matrix. Thus, debilitated wear resistance of the alumina domain in a 

heated aqueous alkaline environment plays a crucial role in the degradation of the 

composite.  

Relating this understanding to the evidence from altered charge transfer 

resistance, the wear debris released also interrupts the passive TiO2 layer formation 

on the TiC domain during continuous brushing. It is important to note that the 

electrochemical current response may have negligible or no contributions from 

alumina even though it could be chemically reacting with an aqueous environment. 

However, XPS chemical analysis of the brushed sample for two hours does show 

traces of TiO2. This indicates that prolonged brushing and exposure to the solution 

does result in TiO2 formation in worn out regions, however, its structure may not 

be uniform and compact to offer any resistance to oxidative charge transfer 

processes because of brushing abrasion. A similar reduction in Rct after abrasion 

due to damage in the protective layer was observed by others [45,46]. 

4 Conclusions 

This study has shed new insights into the interplay of abrasion and electrochemical 

degradation of alumina-TiC ceramic composites in an aqueous environment. An 

oxidative electrochemical process on TiC is activated by brushing abrasion while 

alumina also undergoes abrasive wear. It is established in this chapter that: 
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• Brushing abrasion causes electrochemical activation of alumina-TiC composites, 

forming TiO2 on the composite surface due to oxidation of TiC in an aqueous 

environment. 

• Abrasive damage occurs near the grain boundaries with traces of 

“microploughing” on alumina domains. 

• Electrochemical response to brushing abrasion and the corresponding surface 

damage are affected by abrasion parameters like acceleration and speed of the 

abrasion motion and the temperature of test environments. 

• An elevated temperature enhances thermodynamic favorability and reaction rate 

of TiC oxidation and enables faster charge transfer. 

• A wet and heated environment increases susceptibility of abrasion damage in 

alumina domains in comparison with a dry condition. 

• Wear debris released from alumina abrasion may hinder the formation of a 

protective TiO2 film. 

 

It is crucial to consider that abrasion mechanisms employed in the study are gentle 

and under extremely low load conditions and such mechanically assisted 

electrochemical degradation mechanism is certainly to be aggravated under a 

greater load in aggressive ionic environments present in the biological milieu. 
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