298 research outputs found

    Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses

    Get PDF
    We have characterized the virome in single grapevines by 454 high-throughput sequencing of double-stranded RNA recovered from the vine stem. The analysis revealed a substantial set of sequences similar to those of fungal viruses. Twenty-six putative fungal virus groups were identified from a single plant source. These represented half of all known mycoviral families including the Chrysoviridae, Hypoviridae, Narnaviridae, Partitiviridae, and Totiviridae. Three of the mycoviruses were associated with Botrytis cinerea, a common fungal pathogen of grapes. Most of the rest appeared to be undescribed. The presence of viral sequences identified by BLAST analysis was confirmed by sequencing PCR products generated from the starting material using primers designed from the genomic sequences of putative mycoviruses. To further characterize these sequences as fungal viruses, fungi from the grapevine tissue were cultured and screened with the same PCR probes. Five of the mycoviruses identified in the total grapevine extract were identified again in extracts of the fungal cultures

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Insights from computational modeling in inflammation and acute rejection in limb transplantation

    Get PDF
    Acute skin rejection in vascularized composite allotransplantation (VCA) is the major obstacle for wider adoption in clinical practice. This study utilized computational modeling to identify biomarkers for diagnosis and targets for treatment of skin rejection. Protein levels of 14 inflammatory mediators in skin and muscle biopsies from syngeneic grafts [n = 10], allogeneic transplants without immunosuppression [n = 10] and allografts treated with tacrolimus [n = 10] were assessed by multiplexed analysis technology. Hierarchical Clustering Analysis, Principal Component Analysis, Random Forest Classification and Multinomial Logistic Regression models were used to segregate experimental groups. Based on Random Forest Classification, Multinomial Logistic Regression and Hierarchical Clustering Analysis models, IL-4, TNF-α and IL-12p70 were the best predictors of skin rejection and identified rejection well in advance of histopathological alterations. TNF-α and IL-12p70 were the best predictors of muscle rejection and also preceded histopathological alterations. Principal Component Analysis identified IL-1α, IL-18, IL-1β, and IL-4 as principal drivers of transplant rejection. Thus, inflammatory patterns associated with rejection are specific for the individual tissue and may be superior for early detection and targeted treatment of rejection. © 2014 Wolfram et al

    The Fission Yeast Homeodomain Protein Yox1p Binds to MBF and Confines MBF-Dependent Cell-Cycle Transcription to G1-S via Negative Feedback

    Get PDF
    The regulation of the G1- to S-phase transition is critical for cell-cycle progression. This transition is driven by a transient transcriptional wave regulated by transcription factor complexes termed MBF/SBF in yeast and E2F-DP in mammals. Here we apply genomic, genetic, and biochemical approaches to show that the Yox1p homeodomain protein of fission yeast plays a critical role in confining MBF-dependent transcription to the G1/S transition of the cell cycle. The yox1 gene is an MBF target, and Yox1p accumulates and preferentially binds to MBF-regulated promoters, via the MBF components Res2p and Nrm1p, when they are transcriptionally repressed during the cell cycle. Deletion of yox1 results in constitutively high transcription of MBF target genes and loss of their cell cycle–regulated expression, similar to deletion of nrm1. Genome-wide location analyses of Yox1p and the MBF component Cdc10p reveal dozens of genes whose promoters are bound by both factors, including their own genes and histone genes. In addition, Cdc10p shows promiscuous binding to other sites, most notably close to replication origins. This study establishes Yox1p as a new regulatory MBF component in fission yeast, which is transcriptionally induced by MBF and in turn inhibits MBF-dependent transcription. Yox1p may function together with Nrm1p to confine MBF-dependent transcription to the G1/S transition of the cell cycle via negative feedback. Compared to the orthologous budding yeast Yox1p, which indirectly functions in a negative feedback loop for cell-cycle transcription, similarities but also notable differences in the wiring of the regulatory circuits are evident

    Assessing the Diversity and Specificity of Two Freshwater Viral Communities through Metagenomics

    Get PDF
    Transitions between saline and fresh waters have been shown to be infrequent for microorganisms. Based on host-specific interactions, the presence of specific clades among hosts suggests the existence of freshwater-specific viral clades. Yet, little is known about the composition and diversity of the temperate freshwater viral communities, and even if freshwater lakes and marine waters harbor distinct clades for particular viral sub-families, this distinction remains to be demonstrated on a community scale

    DNA copy number profiling reveals extensive genomic loss in hereditary BRCA1 and BRCA2 ovarian carcinomas

    Full text link
    Background: Few studies have attempted to characterise genomic changes occurring in hereditary epithelial ovarian carcinomas (EOCs) and inconsistent results have been obtained. Given the relevance of DNA copy number alterations in ovarian oncogenesis and growing clinical implications of the BRCA-gene status, we aimed to characterise the genomic profiles of hereditary and sporadic ovarian tumours. Methods: High-resolution array Comparative Genomic Hybridisation profiling of 53 familial (21 BRCA1, 6 BRCA2 and 26 non- BRCA1/2) and 15 sporadic tumours in combination with supervised and unsupervised analysis was used to define common and/or specific copy number features. Results: Unsupervised hierarchical clustering did not stratify tumours according to their familial or sporadic condition or to their BRCA1/2 mutation status. Common recurrent changes, spanning genes potentially fundamental for ovarian carcinogenesis, regardless of BRCA mutations, and several candidate subtype-specific events were defined. Despite similarities, greater contribution of losses was revealed to be a hallmark of BRCA1 and BRCA2 tumours. Conclusion: Somatic alterations occurring in the development of familial EOCs do not differ substantially from the ones occurring in sporadic carcinomas. However, some specific features like extensive genomic loss observed in BRCA1/2 tumours may be of clinical relevance helping to identify BRCA-related patients likely to respond to PARP inhibitorsThis study was funded by the Fondo de Investigacio´n Sanitaria (FIS), Instituto de Salud Carlos III (grants CP07/00113 and PS09/01094

    Analysis of Interactions of Salmonella Type Three Secretion Mutants with 3-D Intestinal Epithelial Cells

    Get PDF
    The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms
    corecore