302 research outputs found
Phase diagram and critical properties of the frustrated Kondo necklace model in a magnetic field
The critical properties of the frustrated Kondo necklace model with a half
saturation magnetization () have been studied by means of an
exact-diagonalization method. It is shown from bosonization technique that the
model can be effectively expressed as a quantum sine-Gordom model. Thus it may
show three (dimer plateau, N{\'e}el plateau and Tomonaga-Luttinger liquid)
phases due to competitions among the Ising anisotropy , and the
nearest- and next-nearest-neighbor exchange interactions and . The
boundary lines on the phase diagram separating the three
phases are determined by the method of level spectroscopy based on the
conformal field theory.Comment: 5 pages, 5 figure
Topological self-similarity on the random binary-tree model
Asymptotic analysis on some statistical properties of the random binary-tree
model is developed. We quantify a hierarchical structure of branching patterns
based on the Horton-Strahler analysis. We introduce a transformation of a
binary tree, and derive a recursive equation about branch orders. As an
application of the analysis, topological self-similarity and its generalization
is proved in an asymptotic sense. Also, some important examples are presented
Infrared Investigation of the Charge Ordering Pattern in the Organic Spin Ladder Candidate (DTTTF)2Cu(mnt)2
We measured the variable temperature infrared response of the spin ladder
candidate (DTTTF)2Cu(mnt)2 in order to distinguish between two competing ladder
models, rectangular versus zigzag, proposed for this family of materials. The
distortion along the stack direction below 235 K is consistent with a doubling
along b through the metal-insulator transition. While this would agree with
either of the ladder models, the concomitant transverse distortion rules out
the rectangular ladder model and supports the zigzag scenario. Intramolecular
distortions within the DTTTF building block molecule also give rise to on-site
charge asymmetry.Comment: 4 pages, 4 figures, submitted to Solid State Science
Dislocation-Mediated Melting: The One-Component Plasma Limit
The melting parameter of a classical one-component plasma is
estimated using a relation between melting temperature, density, shear modulus,
and crystal coordination number that follows from our model of
dislocation-mediated melting. We obtain in good agreement
with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Search for Anomalous Couplings in the Higgs Sector at LEP
Anomalous couplings of the Higgs boson are searched for through the processes
e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70
GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity
collected with the L3 detector at LEP at centre-of-mass energies
sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H
-> Z\gamma and H -> WW^(*) are considered and no evidence is found for
anomalous Higgs production or decay. Limits on the anomalous couplings d, db,
Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H
-> gamma gamma and H -> Z gamma decay rates
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays
Bose-Einstein correlations of both neutral and like-sign charged pion pairs
are measured in a sample of 2 million hadronic Z decays collected with the L3
detector at LEP. The analysis is performed in the four-momentum difference
range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be
smaller than that of charged pions. This result is in qualitative agreement
with the string fragmentation model
Z Boson Pair-Production at LEP
Events stemming from the pair-production of Z bosons in e^+e^- collisions are
studied using 217.4 pb^-1 of data collected with the L3 detector at
centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events
with b quarks is also investigated.
Combining these events with those collected at lower centre-of-mass energies,
the Standard Model predictions for the production mechanism are verified. In
addition, limits are set on anomalous couplings of neutral gauge bosons and on
effects of extra space dimensions
Neutral-Current Four-Fermion Production in e+e- Interactions at LEP
Neutral-current four-fermion production, e+e- -> ffff is studied in 0.7/fb of
data collected with the L3 detector at LEP at centre-of-mass energies
root(s)=183-209GeV. Four final states are considered: qqvv, qqll, llll and
llvv, where l denotes either an electron or a muon. Their cross sections are
measured and found to agree with the Standard Model predictions. In addition,
the e+e- -> Zgamma* -> ffff process is studied and its total cross section at
the average centre-of-mass energy 196.6GeV is found to be 0.29 +/- 0.05 +/-
0.03 pb, where the first uncertainty is statistical and the second systematic,
in agreement with the Standard Model prediction of 0.22 pb. Finally, the mass
spectra of the qqll final states are analysed to search for the possible
production of a new neutral heavy particle, for which no evidence is found
- âŠ