228 research outputs found

    Multi-coil focused EMAT for characterisation of surface-breaking defects of arbitrary orientation

    Get PDF
    Electromagnetic Acoustic Transducers (EMATs) are a useful ultrasonic tool for non-destructive evaluation in harsh environments due to their non-contact capabilities, and their ability to operate through certain coatings. This work presents a new Rayleigh wave EMAT transducer design, employing geometric focusing to improve the signal strength and detection precision of surface breaking defects. The design is robust and versatile, and can be used at frequencies centered around 1 MHz. Two coils are used in transmission mode, which allows the usage of frequency-based measurement of the defect depth. Using a 2 MHz driving signal, a focused beam spot with a width of 1.3±0.25 mm and a focal depth of 3.7±0.25 mm is measured, allowing for defect length measurements with an accuracy of±0.4 mm and detection of defects as small as 0.5 mm depth and 1 mm length. A set of four coils held under one magnet is used to find defects at orientations offset from normal to the ultrasound beam propagation direction. This EMAT has a range which allows detection of defects which propagate at angles from 16° to 170° relative to the propagation direction over the range of 0–180°, and the setup has the potential to be able to detect defects propagating at all angles relative to the wave propagation direction if two coils are alternately employed as generation coils

    Snipe taxonomy based on vocal and non-vocal sound displays: the South American Snipe is two species

    Get PDF
    We analysed breeding sounds of the two subspecies of South American Snipe Gallinago paraguaiae paraguaiae and Gallinago paraguaiae magellanica to determine whether they might be different species: loud vocalizations given on the ground, and the tail‐generated Winnow given in aerial display. Sounds of the two taxa differ qualitatively and quantitatively. Both taxa utter two types of ground call. In G. p. paraguaiae, the calls are bouts of identical sound elements repeated rhythmically and slowly (about five elements per second (Hz)) or rapidly (about 11 Hz). One call of G. p. magellanica is qualitatively similar to those of G. p. paraguaiae but sound elements are repeated more slowly (about 3 Hz). However, its other call type differs strikingly: it is a bout of rhythmically repeated sound couplets, each containing two kinds of sound element. The Winnow of G. p. paraguaiae is a series of sound elements that gradually increase in duration and energy; by contrast, that of G. p. magellanica has two or more kinds of sound element that roughly alternate and are repeated as sets, imparting a stuttering quality. Sounds of the related Puna Snipe (Gallinago andina) resemble but differ quantitatively from those of G. p. paraguaiae. Differences in breeding sounds of G. p. paraguaiae and G. p. magellanica are strong and hold throughout their geographical range. Therefore we suggest that the two taxa be considered different species: G. paraguaiae east of the Andes in much of South America except Patagonia, and G. magellanica in central and southern Chile, Argentina east of the Andes across Patagonia, and Falklands/Malvinas.Fil: Miller, Edward H.. Memorial University Of Newfoundland; CanadĂĄFil: Areta, Juan Ignacio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Jaramillo, Alvaro. San Francisco Bay Bird Observatory; Estados UnidosFil: Imberti, Santiago. AsociaciĂłn Ambiente Sur, Rio Gallegos; ArgentinaFil: Matus, Ricardo. KilĂłmetro 7 Sur; Chil

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Measurement of the CP-violating phase \phi s in Bs->J/\psi\pi+\pi- decays

    Get PDF
    Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of prime importance in probing new physics. Here 7421 +/- 105 signal events from the dominantly CP-odd final state J/\psi pi+ pi- are selected in 1/fb of pp collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A time-dependent fit to the data yields a value of phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard Model expectation. No evidence of direct CP violation is found.Comment: 15 pages, 10 figures; minor revisions on May 23, 201

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) and the direct CP asymmetry in B0 -> K*0 gamma

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 phi gamma has been measured using an integrated luminosity of 1.0 fb-1 of pp collision data collected by the LHCb experiment at a centre-of-mass energy of sqrt(s)=7 TeV. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.23 +/- 0.06(stat.) +/- 0.04(syst.) +/- 0.10(fs/fd), where the first uncertainty is statistical, the second is the experimental systematic uncertainty and the third is associated with the ratio of fragmentation fractions fs/fd. Using the world average value for BR(B0 -> K*0 gamma), the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.5 +/- 0.4) x 10^{-5}. The direct CP asymmetry in B0 -> K*0 gamma decays has also been measured with the same data and found to be A(CP)(B0 -> K*0 gamma) = (0.8 +/- 1.7(stat.) +/- 0.9(syst.))%. Both measurements are the most precise to date and are in agreement with the previous experimental results and theoretical expectations.Comment: 21 pages, 3 figues, 4 table

    First observation of the decay Bˉs0→D0K∗0\bar{B}^0_s \to D^0 K^{*0} and a measurement of the ratio of branching fractions B(Bˉs0→D0K∗0)B(Bˉ0→D0ρ0)\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)}

    Get PDF
    The first observation of the decay Bˉs0→D0K∗0\bar{B}^0_s \to D^0 K^{*0} using pppp data collected by the LHCb detector at a centre-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb−1^{-1}, is reported. A signal of 34.4±6.834.4 \pm 6.8 events is obtained and the absence of signal is rejected with a statistical significance of more than nine standard deviations. The Bˉs0→D0K∗0\bar{B}^0_s \to D^0 K^{*0} branching fraction is measured relative to that of Bˉ0→D0ρ0\bar{B}^0 \to D^0 \rho^0: B(Bˉs0→D0K∗0)B(Bˉ0→D0ρ0)=1.48±0.34±0.15±0.12\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)} = 1.48 \pm 0.34 \pm 0.15 \pm 0.12, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the B0B^0 and Bs0B^0_s hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269

    H-ATLAS/GAMA: magnification bias tomography. Astrophysical constraints above ~1 arcmin

    Get PDF
    An unambiguous manifestation of the magnification bias is the cross-correlation between two source samples with non-overlapping redshift distributions. In this work we measure and study the cross-correlation signal between a foreground sample of GAMA galaxies with spectroscopic redshifts in the range 0.2<z<0.8, and a background sample of H-ATLAS galaxies with photometric redshifts gsim1.2. It constitutes a substantial improvement over the cross-correlation measurements made by Gonzalez-Nuevo et al. (2014) with updated catalogues and wider area (with S/Ngsim 5 below 10 arcmin and reaching S/N~ 20 below 30 arcsec). The better statistics allow us to split the sample in different redshift bins and to perform a tomographic analysis (with S/Ngsim 3 below 10 arcmin and reaching S/N~ 15 below 30 arcsec). Moreover, we implement a halo model to extract astrophysical information about the background galaxies and the deflectors that are producing the lensing link between the foreground (lenses) and background (sources) samples. In the case of the sources, we find typical mass values in agreement with previous studies: a minimum halo mass to host a central galaxy, Mmin~ 1012.26 M⊙, and a pivot halo mass to have at least one sub-halo satellite, M1~ 1012.84 M⊙. However, the lenses are massive galaxies or even galaxy groups/clusters, with minimum mass of Mminlens~ 1013.06 M⊙. Above a mass of M1lens~ 1014.57 M⊙ they contain at least one additional satellite galaxy which contributes to the lensing effect. The tomographic analysis shows that, while M1lens is almost redshift independent, there is a clear evolution of increase Mminlens with redshift in agreement with theoretical estimations. Finally, the halo modeling allows us to identify a strong lensing contribution to the cross-correlation for angular scales below 30 arcsec. This interpretation is supported by the results of basic but effective simulations
    • 

    corecore