478 research outputs found

    Rip/singularity free cosmology models with bulk viscosity

    Full text link
    In this paper we present two concrete models of non-perfect fluid with bulk viscosity to interpret the observed cosmic accelerating expansion phenomena, avoiding the introduction of exotic dark energy. The first model we inspect has a viscosity of the form ζ=ζ0+(ζ1−ζ2q)H{\zeta} = {\zeta}_0 + ({\zeta}_1-{\zeta}_2q)H by taking into account of the decelerating parameter q, and the other model is of the form ζ=ζ0+ζ1H+ζ2H2{\zeta} = {\zeta}_0 + {\zeta}_1H + {\zeta}_2H^2. We give out the exact solutions of such models and further constrain them with the latest Union2 data as well as the currently observed Hubble-parameter dataset (OHD), then we discuss the fate of universe evolution in these models, which confronts neither future singularity nor little/pseudo rip. From the resulting curves by best fittings we find a much more flexible evolution processing due to the presence of viscosity while being consistent with the observational data in the region of data fitting. With the bulk viscosity considered, a more realistic universe scenario is characterized comparable with the {\Lambda}CDM model but without introducing the mysterious dark energy.Comment: 9 pages, 6 figures, submitted to EPJ-

    The Discrepancy Between tau and e+e- Spectral Functions Revisited and the Consequences for the Muon Magnetic Anomaly

    Full text link
    We revisit the procedure for comparing the pi pi spectral function measured in tau decays to that obtained in e+e- annihilation. We re-examine the isospin-breaking corrections using new experimental and theoretical input, and find improved agreement between the tau- --> pi- pi0 nu_tau branching fraction measurement and its prediction using the isospin-breaking-corrected e+e- --> pi+pi- spectral function, though not resolving all discrepancies. We recompute the lowest order hadronic contributions to the muon g-2 using e+e- and tau data with the new corrections, and find a reduced difference between the two evaluations. The new tau-based estimate of the muon magnetic anomaly is found to be 1.9 standard deviations lower than the direct measurement.Comment: 10 pages, 6 figures, submitted to Eur. Phys. J. C; (v2): Revised version with improved and uniform treatment of tau and e+e- data with HVPTools and a few minor bug fixes; (v3): Final version accepted for publicatio

    Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e+e- -> pi+pi- cross section data from BABAR

    Get PDF
    Using recently published, high-precision pi+pi- cross section data by the BABAR experiment from the analysis of e+e- events with high-energy photon radiation in the initial state, we reevaluate the lowest order hadronic contribution a_mu[had,LO] to the anomalous magnetic moment of the muon. We employ newly developed software featuring improved data interpolation and averaging, more accurate error propagation and systematic validation. With the new data, the discrepancy between the e+e- and tau-based results for the dominant two-pion mode reduces from previously 2.4 sigma to 1.5 sigma in the dispersion integral, though significant local discrepancies in the spectra persist. We obtain for the e+e- based evaluation amu[had,LO] = (695.5 +- 4.1) 10^-10, where the error accounts for all sources. The full Standard Model prediction of a_mu differs from the experimental value by 3.2 sigma.Comment: 9 pages, 7 figures. Version published in Eur. Phys. J. C. The theory vs. experiment discrepancy increased by 0.1 \sigma, using the updated experimental g-2 value with the new \mu_\mu/\mu_p rati

    Conformal Affine Toda Soliton and Moduli of IIB Superstring on AdS5×S5AdS_5\times S^5

    Full text link
    In this paper we interpret the hidden symmetry of the moduli space of IIB superstring on AdS5×S5AdS_{5}\times S^{5} in terms of the chiral embedding in AdS5AdS_{5}, which turns to be the CP3\mathbb{CP}^{3} conformal affine Toda model. We review how the position ÎŒ\mu of poles in the Riemann-Hilbert formulation of dressing transformation and how the value of loop parameters ÎŒ\mu in the vertex operator of affine algebra determines the moduli space of the soliton solutions, which describes the moduli space of the Green-Schwarz superstring. We show also how this affine SU(4) symmetry affinize the conformal symmetry in the twistor space, and how a soliton string corresponds to a Robinson congruence with twist and dilation spin coefficients ÎŒ\mu of twistor.Comment: Final version, Misprints corrected, Note adde

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.1∘3.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38−6+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (69−13+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure
    • 

    corecore