1,332 research outputs found

    UDP: an integral management system of embedded scripts implemented into the IMaX instrument of the Sunrise mission

    Full text link
    The UDP (User Defined Program) system is a scripting framework for controlling and extending instrumentation software. It has been specially designed for air- and space-borne instruments with flexibility, error control, reuse, automation, traceability and ease of development as its main objectives. All the system applications are connected through a database containing the valid script commands including descriptive information and source code. The system can be adapted to different projects without changes in the framework tools, thus achieving great level of flexibility and reusability. The UDP system comprises: an embedded system for the execution of scripts by the instrument software; automatic tools for aiding in the creation, modification, documentation and tracing of new scripting language commands; and interfaces for the creation of scripts and execution control.Comment: This paper has been presented in the SPIE 2008, Marselle, Franc

    Bioactivity of wollastonite/aerogels composites obtained from a TEOS-MTES matrix

    Get PDF
    Organic-inorganic hybrid materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS), methyltrimethoxysilane (MTES), synthetic wollastonite powders and polydimethylsiloxane (PDMS) in an ethanol solution. Aerogels were prepared from acid hydrolysis of TEOS and MTES with different volume ratio in ethanol, followed by addition of wollastonite powder and PDMS in order to obtain aerogels with 20 wt% of PDMS and 5 wt% of CaO of the total silica. Finally, when the wet gels were obtained, they were supercritically dried at 260°C and 90 bar, in ethanol. In order to obtain its bioactivity, one method for surface activation is based on a wet chemical alkaline treatment. The particular interest of this study is that we introduce hybrid aerogels, in a 1 M solution of NaOH, for 30 s at room temperature. We evaluate the bioactivity of TEOS-MTES aerogel when immersed in a static volume of simulated body fluid (SBF). An apatite layer of spherical-shaped particles of uniform size smaller than 5 microns is observed to form on the surface of the aerogels after 25 days soaking in SBF.Ministerio de Ciencia e Innovación MAT2005-01583Junta de Andalucía TEP 79

    Aerogeles con aplicaciones en biomedicina y medioambiente

    Get PDF
    Es posible preparar materiales híbridos inorgánico-orgánicos incorporando una fase orgánica sobre un sol obtenido por hidrólisis de metalorgánico mientras se aplican ultrasonidos de alta potencia. Cuando las dos fases quedan químicamente enlazadas resulta un sono-ormosil (de ORganic MOdified SILicate) conocido también como ormosil duro. Unas de las aplicaciones de estos materiales atañe el dominio de la biotecnología pues llegan a ser bioactivos cuando contienen Ca, cumpliendo con ello el primer requisito para su validez como implantes óseos. La fuente de calcio, seleccionada para optimizar el proceso de secado supercrítico en etanol, ha sido partículas de wollastonita, (CaSiO3), material bioactivo, lo que al influir sobre el volumen poroso y el radio de los poros, permite controlar la densidad y situar la resistencia mecánica en el intervalo de valores propios de los huesos humanos esponjosos. Por otra parte, los poros pueden hacerse químicamente activos y usarse como soportes estructurales para la captación y fijación de gases.It is possible to synthesise inorganic-organic hybrid materials incorporating the organic phase to a sol prepared from a metal organic under high power ultrasounds. When both phases are chemically bonded a sono-ormosil (from ORganic MOdified SILicate) results, also known as hard ormosil. One of the applications of these materials concerns the biotechnologies since they become bioactive when are doped with Ca, fulfilling this way the preliminary condition to be considered for bone implants. The addition of silicate particles allows modifying the pore volume and radius. We have used these gels with particles, as precursor of the bioactive component, in order to act on the porosity for controlling the density and adequate the mechanical strength to that of the human cancellous bone. In like manner, the pores becomes chemically active and be used as structural support for noxious atmospheric gas sequestration

    Biological Activity and Implications of the Metalloproteinases in Diabetic Foot Ulcers

    Get PDF
    Inadequate metabolic control predisposes diabetic patient to a series of complications on account of diabetes mellitus (DM). Among the most common complications of DM is neuropathy, which causes microvascular damage by hyperglycemia in the lower extremities which arrives characterized by a delayed closing. The global prevalence of diabetic neuropathy (DN) was 66% of people with diabetes in 2015, representing the principal cause of total or partial lower extremities amputation, with 22.6% of the patients with DN. Matrix metalloproteinases (MMPs) are involved in healing. The function that these mainly play is the degradation during inflammation that has as consequence the elimination of the extracellular matrix (ECM), the disintegration of the capillary membrane to give way to angiogenesis and cellular migration for the remodeling of damaged tissue. The imbalance in MMPs may increase the chronicity of a wound, what leads to chronic foot ulcers and amputation. This chapter focuses on the role of MMPs in diabetic wound healing

    Reliability of a novel electro-medical device for wheal size measurement in allergy skin testing: An exploratory clinical trial

    Get PDF
    Skin prick testing (SPT) is the cornerstone of IgE-mediated allergy diagnosis,1 due to its high sensitivity and specificity.2 However, a uniform method for wheal measurement does not exist. Ansotegui et al.2 recommends to measure wheals in millimeters with a ruler, in many centers they are outlined with a pen and transfer by tape to a paper and then measured. Subsequently, the specialist is able to manually measure the maximum (MD) and orthogonal diameter (OD) of the wheal. This procedure is time consuming and makes repro-ducible measurements difficult.2,3 Knowing the wheal's area could help make a more accurate diagnosis.4 Over the last 30 years, many attempts have been made to develop a device to measure the size of SPT.3 Nexkin DSPT® (Figure S1A,B) is a novel mechatronic system based on 3D laser technology, that automatically locates allergen's wheal and measures its size (MD, OD and area in square millimeters) (Figure S1C)

    Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC

    Full text link
    We present TeV gamma-ray observations of the Crab Nebula, the standard reference source in ground-based gamma-ray astronomy, using data from the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use two independent energy-estimation methods that utilize extensive air shower variables such as the core position, shower angle, and shower lateral energy distribution. In contrast, the previously published HAWC energy spectrum roughly estimated the shower energy with only the number of photomultipliers triggered. This new methodology yields a much improved energy resolution over the previous analysis and extends HAWC's ability to accurately measure gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula is well fit to a log parabola shape (dNdE=ϕ0(E/7 TeV)αβln(E/7 TeV))\left(\frac{dN}{dE} = \phi_0 \left(E/\textrm{7 TeV}\right)^{-\alpha-\beta\ln\left(E/\textrm{7 TeV}\right)}\right) with emission up to at least 100 TeV. For the first estimator, a ground parameter that utilizes fits to the lateral distribution function to measure the charge density 40 meters from the shower axis, the best-fit values are ϕo\phi_o=(2.35±\pm0.040.21+0.20^{+0.20}_{-0.21})×\times1013^{-13} (TeV cm2^2 s)1^{-1}, α\alpha=2.79±\pm0.020.03+0.01^{+0.01}_{-0.03}, and β\beta=0.10±\pm0.010.03+0.01^{+0.01}_{-0.03}. For the second estimator, a neural network which uses the charge distribution in annuli around the core and other variables, these values are ϕo\phi_o=(2.31±\pm0.020.17+0.32^{+0.32}_{-0.17})×\times1013^{-13} (TeV cm2^2 s)1^{-1}, α\alpha=2.73±\pm0.020.02+0.03^{+0.03}_{-0.02}, and β\beta=0.06±\pm0.01±\pm0.02. The first set of uncertainties are statistical; the second set are systematic. Both methods yield compatible results. These measurements are the highest-energy observation of a gamma-ray source to date.Comment: published in Ap

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR
    corecore