99 research outputs found

    Antimicrobial promotion of pig growth is associated with tissue-specific remodeling of bile acid signature and signaling

    Get PDF
    The spread of bacterial resistance to antimicrobials (AMA) have intensified efforts to discontinue the non-therapeutic use of AMA in animal production. Finding alternatives to AMA, however, is currently encumbered by the obscure mechanism that underlies their growth-promoting action. In this report, we demonstrate that combinations of antibiotics and zinc oxide at doses commonly used for stimulating growth or preventing post-weaning enteritis in pigs converge in promoting microbial production of bile acids (BA) in the intestine. This leads to tissue-specific modifications in the proportion of BA, thereby amplifying BA signaling in intestine, liver, and white adipose tissue (WAT). Activation of BA-regulated pathways ultimately reinforces the intestinal protection against bacterial infection and pathological secretion of fluids and electrolytes, attenuates inflammation in colon and WAT, alters protein and lipid metabolism in liver, and increases the circulating levels of the hormone FGF19. Conceivably, these alterations could spare nutrients for growth and improve the metabolic efficiency of AMA-treated animals. This work provides evidence that BA act as signaling molecules that mediate host physiological, metabolic, and immune responses to the AMA-induced alterations in gut microbial metabolism, eventually permitting the growth-promoting action of AMA. Consequently, BA emerge as a promising target for developing efficacious alternatives to AMA

    The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D

    Get PDF
    Phosphodiesterase 4 (PDE4) inhibitors, i.e. rolipram, are being extensively investigated as therapeutic agents in several diseases. Emesis is one of the most common side effects of PDE4 inhibitors. Given the fact that the area postrema is considered the chemoreceptor trigger zone for vomiting, the present study investigates the regional distribution and cellular localization of the four gene transcripts of the PDE4 subfamily (PDE4A, PDE4B, PDE4C and PDE4D) in human brainstem. In situ hybridization histochemistry was used to locate the mRNA distribution of the four PDE4 subfamilies in the area postrema and related nuclei of human postmortem brainstem. We have found that in the brainstem PDE4B and PDE4D mRNA expression is abundant and distributed not only in neuronal cells, but also in glial cells, and on blood vessels. The hybridization signals for PDE4B and PDE4D mRNAs in the area postrema were stronger than those in any other nuclei in the brainstem. They were also found in vomiting-related nuclei such as the nucleus of the solitary tract and the dorsal vagal motor nucleus. These findings suggest that cAMP signaling modification in the area postrema could mediate the emetic effects of PDE4 inhibitors in human brainstem.This work was supported by grants from Ministerio de Educación y Ciencia and Fondo Europeo de Desarrollo Regional (SAF2006-10243). F.M. was on sabbatical leave from Hirosaki University School of Medicine. S.P.-T. was recipient of a predoctoral fellowship from CIRIT (Generalitat de Catalunya).Peer Reviewe

    African Mountain Thistles: Three New Genera in the Carduus-Cirsium Group

    Get PDF
    The floras on the highest mountains in tropical eastern Africa are among the most unique floras in the world. Despite the exceptionally high concentration of endemic species, these floras remain understudied from an evolutionary point of view. In this study, we focus on the Carduus-Cirsium group (subtribe Carduinae) to unravel the evolutionary relationships of the species endemic to the tropical Afromontane and Afroalpine floras, aiming to improve the systematics of the group. We applied the Hyb-Seq approach using the Compositae1061 probe set on 190 samples (159 species), encompassing representatives of all genera of Carduinae. We used two recently developed pipelines that enabled the processing of raw sequence reads, identification of paralogous sequences and segregation into orthologous alignments. After the implementation of a missing data filter, we retained sequences from 986 nuclear loci and 177 plastid regions. Phylogenomic analyses were conducted using both concatenated and summary-coalescence methods. The resulting phylogenies were highly resolved and revealed three distinct evolutionary lineages consisting of the African species traditionally referred to as Carduus and Cirsium. Consequently, we propose the three new genera Afrocarduus, Afrocirsium and Nuriaea; the latter did notably not belong to the Carduus-Cirsium group. We detected some incongruences between the phylogenies based on concatenation vs. coalescence and on nuclear vs. plastid datasets, likely attributable to incomplete lineage sorting and/or hybridization

    Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations

    Get PDF
    Solid organ transplant (SOT) recipients are especially at risk of developing infections by multidrug resistant (MDR) Gram-negative bacilli (GNB), as they are frequently exposed to antibiotics and the healthcare setting, and are regulary subject to invasive procedures. Nevertheless, no recommendations concerning prevention and treatment are available. A panel of experts revised the available evidence; this document summarizes their recommendations: (1) it is important to characterize the isolate´s phenotypic and genotypic resistance profile; (2) overall, donor colonization should not constitute a contraindication to transplantation, although active infected kidney and lung grafts should be avoided; (3) recipient colonization is associated with an increased risk of infection, but is not a contraindication to transplantation; (4) different surgical prophylaxis regimens are not recommended for patients colonized with carbapenem-resistant GNB; (5) timely detection of carriers, contact isolation precautions, hand hygiene compliance and antibiotic control policies are important preventive measures; (6) there is not sufficient data to recommend intestinal decolonization; (7) colonized lung transplant recipients could benefit from prophylactic inhaled antibiotics, specially for Pseudomonas aeruginosa; (8) colonized SOT recipients should receive an empirical treatment which includes active antibiotics, and directed therapy should be adjusted according to susceptibility study results and the severity of the infection.J.T.S. holds a research contract from the Fundación para la Formación e Investigación de los Profesionales de la Salud de Extremadura (FundeSalud), Instituto de Salud Carlos III. M.F.R. holds a clinical research contract “Juan Rodés” (JR14/00036) from the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III

    Discontinuities in Recurrent Neural Networks

    No full text
    This article studies the computational power of various discontinuous real computational models that are based on the classical analog recurrent neural network (ARNN). This ARNN consists of finite number of neurons; each neuron computes a polynomial net function and a sigmoid-like continuous activation function. We introduce arithmetic networks as ARNN augmented with a few simple discontinuous (e.g., threshold or zero test) neurons. We argue that even with weights restricted to polynomial time computable reals, arithmetic networks are able to compute arbitrarily complex recursive functions. We identify many types of neural networks that are at least as powerful as arithmetic nets, some of which are not in fact discontinuous, but they boost other arithmetic operations in the net function (e.g., neurons that can use divisions and polynomial net functions inside sigmoid-like continuous activation functions). These arithmetic networks are equivalent to the Blum-Shub-Smale model, when the latter is restricted to a bounded number of registers. With respect to implementation on digital computers, we show that arithmetic networks with rational weights can be simulated with exponential precision, but even with polynomial-time computable real weights, arithmetic networks are not subject to any fixed precision bounds. This is in contrast with the ARNN that are known to demand precision that is linear in the computation time. When nontrivial periodic functions (e.g., fractional part, sine, tangent) are added to arithmetic networks, the resulting networks are computationally equivalent to a massively parallel machine. Thus, these highly discontinuous networks can solve the presumably intractable class of PSPACE-complete problems in polynomial time

    SIGACT News complexity theory column 32

    No full text
    corecore