140 research outputs found

    Wind ionization structure of the short-period eclipsing LMC Wolf-Rayet binary BAT99-129: preliminary results

    Full text link
    BAT99-129 is a rare, short-period eclipsing Wolf-Rayet binary in the Large Magellanic Cloud. We present here medium-resolution NTT/EMMI spectra that allow us to disentangle the spectra of the two components and find the orbital parameters of the binary. We also present VLT/FORS1 spectra of this binary taken during the secondary eclipse, i.e. when the companion star passes in front of the Wolf-Rayet star. With these data we are able to extract, for the first time in absolute units for a WR+O binary, the sizes of the line emitting regions.Comment: 6 pages, 5 figures, to appear in proc. of "Close Binaries in the 21st Century: New Opportunities and Challenges", 2005 - Corrected Figure

    The Wolf-Rayet stars in the Large Magellanic Cloud: A comprehensive analysis of the WN class

    Full text link
    Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the LMC. Methods: For the quantitative analysis of the wind-dominated emission-line spectra, we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results: We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars that are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 10^6 Lsun and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populate the luminosity range between log (L/Lsun) = 5.3...5.8. Conclusions: While the few extremely luminous stars (log (L/Lsun) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/Lsun) = 5.3...5.8, these stars originate from initial masses between 20 and 40 Msun. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger and effective temperatures correspondingly lower than predicted from stellar evolution models, probably due to subphotospheric inflation.Comment: 17+46 pages; 10+54 figures; v2: typos corrected, space-saving layout for appendix C, published in A&

    Spectroscopy of SMC Wolf-Rayet Stars Suggests that Wind-Clumping does not Depend on Ambient Metallicity

    Get PDF
    The mass-loss rates of hot, massive, luminous stars are considered a decisive parameter in shaping the evolutionary tracks of such stars and influencing the interstellar medium on galactic scales. The small-scale structures (clumps) omnipresent in such winds may reduce empirical estimates of mass-loss rates by an evolutionarily significant factor of >=3. So far, there has been no direct observational evidence that wind-clumping may persist at the same level in environments with a low ambient metallicity, where the wind-driving opacity is reduced. Here we report the results of time-resolved spectroscopy of three presumably single Population I Wolf-Rayet stars in the Small Magellanic Cloud, where the ambient metallicity is ~1/5 Z_Sun.We detect numerous small-scale emission peaks moving outwards in the accelerating parts of the stellar winds.The general properties of the moving features, such as their velocity dispersions,emissivities and average accelerations, closely match the corresponding characteristics of small-scale inhomogeneities in the winds of Galactic Wolf-Rayet stars.Comment: 9 pages, 3 figures; accepted by ApJ Letter

    Two new Wolf-Rayet stars in the LMC

    Full text link
    We report the discovery of two previously unknown WN3 stars in the Large Magellanic Cloud. Both are bright (15th magnitude), isolated, and located in regions covered in earlier surveys, although both are relatively weak-lined. We suggest that there may be O(10)\mathcal{O}(10) remaining undiscovered WNE stars in the LMC

    Revisiting a fundamental test of the disc instability model for X-ray binaries

    Full text link
    We revisit a core prediction of the disc instability model (DIM) applied to X-ray binaries. The model predicts the existence of a critical mass transfer rate, which depends on disc size, separating transient and persistent systems. We therefore selected a sample of 52 persistent and transient neutron star and black hole X-ray binaries and verified if observed persistent (transient) systems do lie in the appropriate stable (unstable) region of parameter space predicted by the model. We find that, despite the significant uncertainties inherent to these kinds of studies, the data are in very good agreement with the theoretical expectations. We then discuss some individual cases that do not clearly fit into this main conclusion. Finally, we introduce the transientness parameter as a measure of the activity of a source and show a clear trend of the average outburst recurrence time to decrease with transientness in agreement with the DIM predictions. We therefore conclude that, despite difficulties in reproducing the complex details of the lightcurves, the DIM succeeds to explain the global behaviour of X-ray binaries averaged over a long enough period of time.Comment: 12 pages, 4 figures. Accepted for publication in MNRAS. Version 2: some typos corrected and references adde

    Multi-wavelength observations of Galactic hard X-ray sources discovered by INTEGRAL. I. The nature of the companion star

    Get PDF
    Context: The INTEGRAL hard X-ray observatory has revealed an emerging population of highly obscured X-ray binary systems through multi-wavelength observations. Previous studies have shown that many of these sources are high-mass X-ray binaries hosting neutron stars orbiting around luminous and evolved companion stars. Aims: To better understand this newly-discovered population, we have selected a sample of sources for which an accurate localisation is available to identify the stellar counterpart and reveal the nature of the companion star and of the binary system. Methods: We performed an intensive study of a sample of thirteen INTEGRAL sources, through multi-wavelength optical to NIR photometric and spectroscopic observations, using EMMI and SofI instruments at the ESO NTT telescope. We performed accurate astrometry and identified candidate counterparts for which we give the optical and NIR magnitudes. We detected many spectral lines allowing us to determine the spectral type of the companion star. We fitted with stellar black bodies the mid-infrared to optical spectral energy distributions of these sources. From the spectral analysis and SED fitting we identified the nature of the companion stars and of the binary systems. (abridged).Comment: A&A in press; The official date of acceptance is 15/12/2007; 25 pages, 6 figures, 8 tables. New version with language editing required by edito

    Spitzer SAGE-SMC Infrared Photometry of Massive Stars in the Small Magellanic Cloud

    Get PDF
    We present a catalog of 5324 massive stars in the Small Magellanic Cloud (SMC), with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 3654 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer, SAGE-SMC survey database, for which we present uniform photometry from 0.3-24 um in the UBVIJHKs+IRAC+MIPS24 bands. We compare the color magnitude diagrams and color-color diagrams to those of the Large Magellanic Cloud (LMC), finding that the brightest infrared sources in the SMC are also the red supergiants, supergiant B[e] (sgB[e]) stars, luminous blue variables, and Wolf-Rayet stars, with the latter exhibiting less infrared excess, the red supergiants being less dusty and the sgB[e] stars being on average less luminous. Among the objects detected at 24 um are a few very luminous hypergiants, 4 B-type stars with peculiar, flat spectral energy distributions, and all 3 known luminous blue variables. We detect a distinct Be star sequence, displaced to the red, and suggest a novel method of confirming Be star candidates photometrically. We find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We estimate mass-loss rates for the red supergiants, confirming the correlation with luminosity even at the metallicity of the SMC. Finally, we confirm the new class of stars displaying composite A & F type spectra, the sgB[e] nature of 2dFS1804 and find the F0 supergiant 2dFS3528 to be a candidate luminous blue variable with cold dust.Comment: 23 pages, 17 figures, 5 tables, accepted for publication in the Astronomical Journa

    The variability plane of accreting compact objects

    Get PDF
    Recently, it has been shown that soft-state black hole X-ray binaries and active galactic nuclei populate a plane in the space defined by the black hole mass, accretion rate and characteristic frequency. We show that this plane can be extended to hard-state objects if one allows a constant offset for the frequencies in the soft and the hard state. During a state transition the frequencies rapidly move from one scaling to the other depending on an additional parameter, possibly the disk-fraction. The relationship between frequency, mass and accretion rate can be further extended by including weakly accreting neutron stars. We explore if the lower kHz QPOs of neutron stars and the dwarf nova oscillations of white dwarfs can be included as well and discuss the physical implications of the found correlation.Comment: Accepted for publication in MNRA

    Massive stars exploding in a He-rich circumstellar medium. I. Type Ibn (SN 2006jc-like) events

    Full text link
    We present new spectroscopic and photometric data of the type Ibn supernovae 2006jc, 2000er and 2002ao. We discuss the general properties of this recently proposed supernova family, which also includes SN 1999cq. The early-time monitoring of SN 2000er traces the evolution of this class of objects during the first few days after the shock breakout. An overall similarity in the photometric and spectroscopic evolution is found among the members of this group, which would be unexpected if the energy in these core-collapse events was dominated by the interaction between supernova ejecta and circumstellar medium. Type Ibn supernovae appear to be rather normal type Ib/c supernova explosions which occur within a He-rich circumstellar environment. SNe Ibn are therefore likely produced by the explosion of Wolf-Rayet progenitors still embedded in the He-rich material lost by the star in recent mass-loss episodes, which resemble known luminous blue variable eruptions. The evolved Wolf-Rayet star could either result from the evolution of a very massive star or be the more evolved member of a massive binary system. We also suggest that there are a number of arguments in favour of a type Ibn classification for the historical SN 1885A (S-Andromedae), previously considered as an anomalous type Ia event with some resemblance to SN 1991bg.Comment: 17 pages including 12 figures and 4 tables. Slightly revised version, conclusions unchanged, 1 figure added. Accepted for publication in MNRA

    The VLT-FLAMES Tarantula Survey I: Introduction and observational overview

    Get PDF
    The VLT-FLAMES Tarantula Survey (VFTS) is an ESO Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). Here we introduce our scientific motivations and give an overview of the survey targets, including optical and near-infrared photometry and comprehensive details of the data reduction. One of the principal objectives was to detect massive binary systems via variations in their radial velocities, thus shaping the multi-epoch observing strategy. Spectral classifications are given for the massive emission-line stars observed by the survey, including the discovery of a new Wolf-Rayet star (VFTS 682, classified as WN5h), 2' to the northeast of R136. To illustrate the diversity of objects encompassed by the survey, we investigate the spectral properties of sixteen targets identified by Gruendl & Chu from Spitzer photometry as candidate young stellar objects or stars with notable mid-infrared excesses. Detailed spectral classification and quantitative analysis of the O- and B-type stars in the VFTS sample, paying particular attention to the effects of rotational mixing and binarity, will be presented in a series of future articles to address fundamental questions in both stellar and cluster evolution.Comment: Accepted by A&A, 52 pages (main body: 19 pages, supplementary tables: 33 pages), v3: two classifications updated to match a parallel pape
    corecore