115 research outputs found

    Biomechanical analysis of body movements of myoelectric prosthesis users during standardized clinical tests

    Get PDF
    Objective: The objective clinical evaluation of user's capabilities to handle their prosthesis is done using various tests which primarily focus on the task completion speed and do not explicitly account for the potential presence of compensatory motions. Given that the excessive body compensation is a common indicator of inadequate prosthesis control, tests which include subjective observations on the quality of performed motions have been introduced. However, these metrics are then influenced by the examiner's opinions, skills, and training making them harder to standardize across patient pools and compare across different prosthetic technologies. Here we aim to objectively quantify the severity of body compensations present in myoelectric prosthetic hand users and evaluate the extent to which traditional objective clinical scores are still able to capture them. Methods: We have instructed 9 below-elbow prosthesis users and 9 able-bodied participants to complete three established objective clinical tests: Box-and-Blocks-Test, Clothespin-Relocation-Test, and Southampton-Hand-Assessment-Procedure. During all tests, upper-body kinematics has been recorded. Results: While the analysis showed that there are some correlations between the achieved clinical scores and the individual body segment travel distances and average speeds, there were only weak correlations between the clinical scores and the observed ranges of motion. At the same time, the compensations were observed in all prosthesis users and, for the most part, they were substantial across the tests. Conclusion: The sole reliance on the currently available objective clinical assessment methods seems inadequate as the compensatory movements are prominent in prosthesis users and yet not sufficiently accounted for

    The long-term effects of an implantable drop foot stimulator on gait in hemiparetic patients

    Get PDF
    Drop foot is a frequent abnormality in gait after central nervous system lesions. Different treatment strategies are available to functionally restore dorsal extension during swing phase in gait. Orthoses as well as surface and implantable devices for electrical stimulation of the peroneal nerve may be used in patients who do not regain good dorsal extension. While several studies investigated the effects of implanted systems on walking speed and gait endurance, only a few studies have focussed on the system’s impact on kinematics and long-term outcomes. Therefore, our aim was to further investigate the effects of the implanted system ActiGait on gait kinematics and spatiotemporal parameters for the first time with a 1-year follow-up period. 10 patients were implanted with an ActiGait stimulator, with 8 patients completing baseline and follow-up assessments. Assessments included a 10-m walking test, video-based gait analysis and a Visual Analogue Scale (VAS) for health status. At baseline, gait analysis was performed without any assistive device as well as with surface electrical stimulation. At follow-up patients walked with the ActiGait system switched off and on. The maximum dorsal extension of the ankle at initial contact increased significantly between baseline without stimulation and follow-up with ActiGait (p = 0.018). While the spatio-temporal parameters did not seem to change much with the use of ActiGait in convenient walking speed, patients did walk faster when using surface stimulation or ActiGait compared to no stimulation at the 10-m walking test at their fastest possible walking speed. Patients rated their health better at the 1-year follow-up. In summary, a global improvement in gait kinematics compared to no stimulation was observed and the long-term safety of the device could be confirmed

    Development and evaluation of a cancer-related fatigue patient education program: protocol of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer-related fatigue (CRF) and its impact on patients' quality of life has been an increasing subject of research. However, in Germany there is a lack of evidence-based interventions consistent with the multidimensional character of fatigue. The objective of this study is to develop and evaluate a self-management program for disease-free cancer patients to cope with CRF.</p> <p>Methods</p> <p>Based on evidence extracted from a literature review, a curriculum for the self-management program was elaborated. The curriculum was reviewed and validated by an interdisciplinary expert group and the training-modules will be pretested with a small number of participants and discussed in terms of feasibility and acceptance.</p> <p>To determine the efficacy of the program a randomised controlled trial will be carried out: 300 patients will be recruited from oncological practices in Bremen, Germany, and will be allocated to intervention or control group. The intervention group participates in the program, whereas the control group receives standard care and the opportunity to take part in the program after the end of the follow-up (waiting control group). Primary outcome measure is the level of fatigue, secondary outcome measures are quality of life, depression, anxiety, self-efficacy and physical activity. Data will be collected before randomisation, after intervention, and after a follow-up of 6 months.</p> <p>Discussion</p> <p>Because there are no comparable self-management programs for cancer survivors with fatigue, the development of the curriculum has been complex; therefore, the critical appraisal by the experts was an important step to validate the program and their contributions have been integrated into the curriculum. The experts appreciated the program as filling a gap in outpatient cancer care.</p> <p>If the results of the evaluation prove to be satisfactory, the outpatient care of cancer patients can be broadened and supplemented.</p> <p>Trial Registration</p> <p>ClinicalTrials NCT00552552</p

    The Impact of Thyroid Cancer and Post-Surgical Radioactive Iodine Treatment on the Lives of Thyroid Cancer Survivors: A Qualitative Study

    Get PDF
    BACKGROUND: Adjuvant treatment with radioactive iodine (RAI) is often considered in the treatment of well-differentiated thyroid carcinoma (WDTC). We explored the recollections of thyroid cancer survivors on the diagnosis of WDTC, adjuvant radioactive iodine (RAI) treatment, and decision-making related to RAI treatment. Participants provided recommendations for healthcare providers on counseling future patients on adjuvant RAI treatment. METHODS: We conducted three focus group sessions, including WDTC survivors recruited from two Canadian academic hospitals. Participants had a prior history of WDTC that was completely resected at primary surgery and had been offered adjuvant RAI treatment. Open-ended questions were used to generate discussion in the groups. Saturation of major themes was achieved among the groups. FINDINGS: There were 16 participants in the study, twelve of whom were women (75%). All but one participant had received RAI treatment (94%). Participants reported that a thyroid cancer diagnosis was life-changing, resulting in feelings of fear and uncertainty. Some participants felt dismissed as not having a serious disease. Some participants reported receiving conflicting messages from healthcare providers on the appropriateness of adjuvant RAI treatment or insufficient information. If RAI-related side effects occurred, their presence was not legitimized by some healthcare providers. CONCLUSIONS: The diagnosis and treatment of thyroid cancer significantly impacts the lives of survivors. Fear and uncertainty related to a cancer diagnosis, feelings of the diagnosis being dismissed as not serious, conflicting messages about adjuvant RAI treatment, and treatment-related side effects, have been raised as important concerns by thyroid cancer survivors

    Actin Assembly at Model-Supported Lipid Bilayers

    Get PDF
    We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant—making this a practical approach for creating stable lipid-actin systems via self-assembly

    Biofeedback - basics and indications

    No full text
    • …
    corecore