386 research outputs found

    Who and where is the renal baroreceptor?: the connexin hypothesis

    Get PDF
    Gap junctions are emerging as a fundamental mechanism for the control of renin synthesis and release. Connexin40 is prominent in juxtaglomerular cells. When missing, it results in hyperreninemia and hypertension. Schweda et al. offer exciting data demonstrating that connexin45, a connexin with different biophysical properties, can replace connexin40 functions related to the control of renin

    Neonatal ureteral obstruction stimulates recruitment of renin-secreting renal cortical cells

    Get PDF
    Neonatal ureteral obstruction stimulates recruitment of renin-secreting renal cortical cells. Unilateral ureteral obstruction (UUO) in the neonate increases ipsilateral renal renin gene expression, an effect which is mediated by renal nerves. To determine whether neonatal UUO alters the number of renal cortical cells secreting renin and whether this change is modulated by renal nerve activity, newborn Sprague-Dawley rats were subjected to left UUO, right uninephrectomy, or sham operation and studied four weeks thereafter. To evaluate the importance of renal nerves in this response, an additional group of animals underwent chemical sympathectomy with guanethidine. Ureteral obstruction was associated with marked reduction in renal mass in the obstructed kidney and contralateral compensatory hypertrophy, changes which were not altered by sympathectomy. Renin messenger RNA and renal renin content were elevated in the obstructed kidney. The number of cells secreting renin, measured by the reverse hemolytic plaque assay, was markedly increased in the obstructed kidney (45 ± 18 plaques/slide vs. 11 ± 1 plaques/slide in sham animals), but not in the opposite kidney or following uninephrectomy. This effect was not significantly altered by sympathectomy. There was no change in the amount of renin secreted per cell or in the secretory response to Ca++. These results show that UUO results in recruitment of cells not previously secreting renin by a mechanism independent of renal nerve activity. This recruitment occurs without alteration of the quantity of renin secreted per cell or in the normal regulatory effect of Ca++ on renin secretion. An increase in the number of renin-secreting cells may contribute to the activation of the renin-angiotensin system, and thus to the vasoconstriction observed following ureteral obstruction

    Comparison of field measurement methods of nitrous oxide soil emissions: from the chamber to the vial

    Get PDF
    Nitrous oxide (N2O) is a greenhouse gas that contributes substantially to global climate change. The N2O soil emissions have a large uncertainty because of its low atmospheric concentration levels and enormous spatial and temporal variability, which hinders its correct field measurement. For this reason, there are many papers focused on improving the N2O measurements in the field, which focus on different parts of the measurement process. However, no studies have focused on determining the appropriate method, in terms of simplicity and precision, for the sample extraction from inside of the chambers and its transfer to the storage vials, although this step is key in the sampling process. This study aimed to assess and compare the accuracies of three simple and economical methods in transfer soil emitted N2O from inside of the chambers to the vials. For this, a highly accepted method (vacuum by manual pump) and two simpler alternative methods (gas exchange by displacement and vacuum by syringe) were compared. Thirty static chambers were assessed with the quantified N2O emission values varied from 0 to 450 ”g m-2 h-1 of N-N2O. Out of the three assessed methods, the vacuum method through the use of a manual vacuum pump was the best to quantifying N2O soil emissions (capturing 57 % of the highest emission values), followed by the gas exchange method by displacement (30 %), and finally by the vacuum method by syringe extraction (13%).Fil: Cosentino, Vanina Rosa Noemi. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Cåtedra de Fertilidad y Fertilizantes; ArgentinaFil: Romaniuk, Romina Ingrid. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Lupi, Ana Maria. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de suelos; ArgentinaFil: Gomez, Federico. Universidad de Buenos Aires. Facultad de Agronomía. Cåtedra de Fertilidad y Fertilizantes; Argentina.Fil Rimski Korsakov, Helena Universidad de Buenos Aires, Facultad de Agronomía, Ciudad Autónoma de Buenos Aires, Buenos Aires, ArgentinaFil: Alvarez, Carina Rosa. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Ciarlo, Esteban Universidad de Buenos Aires, Facultad de Agronomía, Ciudad Autónoma de Buenos Aires, Argentin

    Molecular cloning of KS, a novel rat gene expressed exclusively in the kidney

    Get PDF
    Molecular cloning of xKSx, a novel rat gene expressed exclusively in the kidney.BackgroundWe aimed to identify genes with kidney specific, developmentally regulated expression. Here we report the cDNA sequence and expression pattern of KS, a novel kidney-specific rat gene.MethodsA partial cDNA was identified by differential display polymerase chain reaction (PCR) of a renal cell fraction enriched for proximal tubular and renin-expressing cells. Using the partial cDNA as a probe, a rat kidney cDNA library was screened. The full-length KS sequence was obtained by PCR amplification of cDNA ends. The expression pattern of KS was investigated by Northern blot. RNA was extracted from several organs of newborn and adult rats, as well as from the kidneys of rats with altered tubular function, that is, rats that had undergone unilateral nephrectomy, unilateral ureteral obstruction, neonatal losartan treatment, and the appropriate control animals. The expression of KS was also investigated in the kidneys of rats with spontaneous or renovascular hypertension.ResultsThe KS cDNA (2426bp) contained one open reading frame encoding a predicted 572 amino acid protein. The derived peptide sequence displayed approximately 70% similarity to the hypertension-related SA gene product and approximately 50% similarity to prokaryotic and eukaryotic acetyl-CoA synthases (EC 6.2.1.1). KS was expressed in the kidney and not in any other organ assayed. KS RNA was not detected in fetal and newborn rat kidney but became apparent after one week of postnatal life. Gene expression was downregulated in rat models of altered tubular function. KS expression was decreased in spontaneously hypertensive rats but not in renovascular hypertension.ConclusionKS, a novel rat gene, exhibits a unique tissue-specific expression exclusively in mature kidneys. The data suggest KS may encode an adenosine monophosphate binding enzyme

    Chain-like uranyl-coordination polymer as a bright green light emitter for sensing and sunlight driven photocatalysis

    Get PDF
    A new uranyl-coordination polymer (UCP) has been solvothermally synthesized employing succinic acid and 1,10-phenanthroline (phen) as ligands. The obtained compound with the formula [(UO2)2(phen)(succ)0.5(OH)(O)4(ÎŒ3-O)(H2O)]·H2O (UNSL-1) is classified as 1D chains showing I0O1 connectivity. Also, the asymmetric unit is composed of two hepta-coordinated uranyl centers: U1 is surrounded by five oxygen atoms from succinate, while U2 is surrounded by two nitrogen atoms from phen and three oxygen atoms from succinate ([U1O7] and [U2N2O5]). The secondary-building unit (SBU) is composed of a sharing edge tetrameric cluster linked with a succinate ligand in the [-1 0 1] direction. Besides, the chains are reinforced by π-π stacking interactions between the aromatic rings of the phen molecules to conform a 2D supramolecular arrangement. Moreover, photoluminescence experiments show strong green emission consistent with uranyl crystalline materials. Photophysical characterization was completed via low-temperature measurements (77 K) and recording the decay emission for calculating the lifetime (τobs) value. Regarding its multifunctional properties, a cation-sensing performance was achieved showing selective quenching toward iron ions in aqueous media. Finally, UNSL-1 was tested as an efficient water photocatalyst for dye degradation under simulated sunlight irradiation, exhibiting promising results for organic-pollutant water remediation.Fil: Gomez, GermĂĄn Ernesto. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Departamento de QuĂ­mica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica; ArgentinaFil: Onna, Diego Ariel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: D'vries, R. F.. Universidad del Cauca; ColombiaFil: Barja, Beatriz Carmen. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Ellena, Javier Alcides. Universidade de Sao Paulo; BrasilFil: Narda, Griselda Edith. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Instituto de Investigaciones en TecnologĂ­a QuĂ­mica; Argentina. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Departamento de QuĂ­mica; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    Homeostasis in Mice with Genetically Decreased Angiotensinogen Is Primarily by an Increased Number of Renin-producing Cells

    Get PDF
    Here we investigate the biochemical, molecular, and cellular changes directed toward blood pressure homeostasis that occur in the endocrine branch of the renin-angiotensin system of mice having one angiotensinogen gene inactivated. No compensatory up-regulation of the remaining normal allele occurs in the liver, the main tissue of angiotensinogen synthesis. No significant changes occur in expression of the genes coding for the angiotensin converting enzyme or the major pressor-mediating receptor for angiotensin, but plasma renin concentration in the mice having only one copy of the angiotensinogen gene is greater than twice wild-type. This increase is mediated primarily by a modest increase in the proportion of renal glomeruli producing renin in their juxtaglomerular apparatus and by four times wild-type numbers of renin-producing cells along afferent arterioles of the glomeruli rather than by up-regulating renin production in cells already committed to its synthesis

    Comparative Studies of Renin-Null Zebrafish and Mice Provide New Functional Insights

    Get PDF
    Background: The renin-angiotensin system is highly conserved across vertebrates, including zebrafish, which possess orthologous genes coding for renin-angiotensin system proteins, and specialized mural cells of the kidney arterioles, capable of synthesising and secreting renin. Methods: We generated zebrafish with CRISPR-Cas9-targeted knockout of renin ( ren −/− ) to investigate renin function in a low blood pressure environment. We used single-cell (10×) RNA sequencing analysis to compare the transcriptome profiles of renin lineage cells from mesonephric kidneys of ren −/− with ren +/+ zebrafish and with the metanephric kidneys of Ren1 c −/− and Ren1 c +/+ mice. Results: The ren −/− larvae exhibited delays in larval growth, glomerular fusion and appearance of a swim bladder, but were viable and withstood low salinity during early larval stages. Optogenetic ablation of renin-expressing cells, located at the anterior mesenteric artery of 3-day-old larvae, caused a loss of tone, due to diminished contractility. The ren −/− mesonephric kidney exhibited vacuolated cells in the proximal tubule, which were also observed in Ren1 c −/− mouse kidney. Fluorescent reporters for renin and smooth muscle actin ( Tg(ren:LifeAct-RFP; acta2:EGFP )), revealed a dramatic recruitment of renin lineage cells along the renal vasculature of adult ren −/− fish, suggesting a continued requirement for renin, in the absence of detectable angiotensin metabolites, as seen in the Ren1 YFP Ren1 c −/− mouse. Both phenotypes were rescued by alleles lacking the potential for glycosylation at exon 2, suggesting that glycosylation is not essential for normal physiological function. Conclusions: Phenotypic similarities and transcriptional variations between mouse and zebrafish renin knockouts suggests evolution of renin cell function with terrestrial survival

    Abstracts of the 2014 Brains, Minds, and Machines Summer School

    Get PDF
    A compilation of abstracts from the student projects of the 2014 Brains, Minds, and Machines Summer School, held at Woods Hole Marine Biological Lab, May 29 - June 12, 2014.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    • 

    corecore