1,484 research outputs found

    Varying CFRP workpiece temperature during slotting : effects on surface metrics, cutting forces and chip geometry

    Get PDF
    Carbon fibre reinforced thermoset polymer (CFRP) components are typically edge trimmed using a milling process to achieve final part shape. During this process the material is subject to significant heating at the tool-workpiece interface. Damage due to heating is fibre orientation specific; for some orientations it can lead to matrix smearing, potentially hiding defects and for others it can increase pullout. Understanding these relationships is critical to attaining higher throughput by edge milling. For the first time this study focuses on active heating of the CFRP rather than passive measurement, through use of a thermocouple controlled system to heat a CFRP workpiece material from room temperature (RT) up to 110 °C prior to machining. Differences in cutting mechanisms for fibres oriented at 0, 45, 90 and -45° are observed with scanning electron microscopy (SEM), and quantified with using focus variation with an increase of 89.9% Sa reported between RT and 110°C CFRP panel pre-heating. Relationships to cutting forces through dynamometer readings and tool temperature through infra-red (IR) measurements are also made with a novel optical method to measure cut chips presented. Results show an increase in chip length and width for increasing cutting temperature from RT to 110°C (3.39 and 0.79 µm for length and width, respectively). This work improves current understandings of how the cutting mechanism changes with increased temperature and suggests how improved milling throughput can be achieved

    Correlations between rail wear rates and operating conditions in a commercial railroad

    Get PDF
    The rail wear rates per traffic unit (mm/MTon) in the curves of a 4.5 km-long commercial line over a period of 9 years were measured and related to specific operation conditions. The rail corrugation was analyzed using a Corrugation Analysis Trolley (CAT) and visual inspection was carried out in order to identify the defects in the railroad. Since Rolling Contact Fatigue (RCF), artificial abrasion and corrugation were found to be the most important issues the grinding procedures used during maintenance of the railroad were evaluated to assess their effectiveness on removing the defects from the rail surface. The results showed that the wear rates in the studied railroad were several times higher than those typically found in the literature, mainly as a consequence of inappropriate grinding regimes. White layer formation and only partial removal of cracks emerged as the most relevant drawbacks of rail grinding procedures

    Synthesis and biological activity of α-galactosyl ceramide KRN7000 and galactosyl (α1→2) galactosyl ceramide

    Get PDF
    We herein report a faster and less cumbersome synthesis of the biologically attractive, α-galactosyl ceramide (α-GalCer), known as KRN7000, and its analogues. More importantly, the use of a silicon tethered intramolecular glycosylation reaction gave easy access to the diglycosyl ceramide Gal(α1→2)GalCer, which has been shown to require uptake and processing to the biologically active α-GalCer derivative

    Origin of Low-Frequency Negative Transconductance Dispersion in p-HEMT

    Full text link
    Measurements of low-frequency transconductance dispersion at different temperatures and conductance deep level transient spectroscopic(CDLTS) studies of an AlGaAs/InGaAs pseudomorphic HEMT were carried out. The experimental results show the presence of defect states at the AlGaAs/InGaAs hetero-interface. A mobility degradation model was developed to explain the low frequency negative transconductance dispersion as well as the apparent hole-like peaks observed in the CDLTS spectra. This model incorporates a time dependent change in 2DEG mobility due to ionised impurity scattering by the remaining charge states at the adjoining AlGaAs/InGaAs hetero-interface

    Brevianes Revisited

    Get PDF
    Breviones are a new family of secondary metabolites that were originally isolated from the New Zealand endemic fungus Penicillium brevicompactum var. Dierckx. These compounds are generally characterized by a new carbon skeleton, known as breviane, which that has three possible structural variations, such as breviane, abeo-breviane, and abeo-norbreviane. Brevianes present a basic diterpenic tricyclic core that is mevalonic in origin and is similar to that of perhydrophenanthrene. The core bears four methyl groups at positions C4, C8, C10, and C13 and has defined stereochemistry at positions C5, C8, C9, C10, and C14. The C1'-C7' side chain has been proposed to have a polyketide biosynthetic origin and is joined to the diterpenic moiety through carbons C2'-C15'. The cyclization and lactonization of this part of the molecule leads to the characteristic breviane spiranic ring fused to the α-pyrone

    Zinc oxide as an ozone sensor

    Get PDF
    Journal of Applied Physics, Vol. 96, nº3This work presents a study of intrinsic zinc oxide thin film as ozone sensor based on the ultraviolet sUVd photoreduction and subsequent ozone re oxidation of zinc oxide as a fully reversible process performed at room temperature. The films analyzed were produced by spray pyrolysis, dc and rf magnetron sputtering. The dc resistivity of the films produced by rf magnetron sputtering and constituted by nanocrystallites changes more than eight orders of magnitude when exposed to an UV dose of 4 mW/cm2. On the other hand, porous and textured zinc oxide films produced by spray pyrolysis at low substrate temperature exhibit an excellent ac impedance response where the reactance changes by more than seven orders of magnitude when exposed to the same UV dose, with a response frequency above 15 kHz, thus showing improved ozone ac sensing discrimination

    Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab

    Full text link
    We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass distribution is obtained that is consistent with W decay and inconsistent with the background prediction by 3.3 standard deviations. From this peak we measure the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet channel.Comment: 20 pages, 4 figures, submitted to PR

    Search for Chargino-Neutralino Associated Production at the Fermilab Tevatron Collider

    Full text link
    We have searched in ppˉp \bar{p} collisions at s\sqrt{s} = 1.8 TeV for events with three charged leptons and missing transverse energy. In the Minimal Supersymmetric Standard Model, we expect trilepton events from chargino-neutralino (\chione \chitwo) pair production, with subsequent decay into leptons. We observe no candidate e+ee±e^+e^-e^\pm, e+eμ±e^+e^-\mu^\pm, e±μ+μe^\pm\mu^+\mu^- or μ+μμ±\mu^+\mu^-\mu^\pm events in 106 pb1^{-1} integrated luminosity. We present limits on the sum of the branching ratios times cross section for the four channels: \sigma_{\chione\chitwo}\cdot BR(\chione\chitwo\to 3\ell+X) 81.5 \mgev\sp and M_\chitwo > 82.2 \mgev\sp for tanβ=2\tan\beta=2, μ=600\mu =-600~\mgev\sp and M_\squark= M_\gluino.Comment: 9 pages and 3 figure

    Measurement of WγW\gamma and ZγZ\gamma Production in ppˉp\bar{p} Collisions at s\sqrt{s} = 1.96 TeV

    Get PDF
    The Standard Model predictions for WγW\gamma and ZγZ\gamma production are tested using an integrated luminosity of 200 pb1^{-1} of \ppbar collision data collected at the Collider Detector at Fermilab. The cross sections are measured selecting leptonic decays of the WW and ZZ bosons, and photons with transverse energy ET>7E_T>7 GeV that are well separated from leptons. The production cross sections and kinematic distributions for the WγW\gamma and ZγZ\gamma are compared to SM predictions.Comment: 7 pages, 4 figures, submitted to PR
    corecore