272 research outputs found

    Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism.

    Get PDF
    Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data

    Consequences of conformational flexibility in hydrogen-bond-driven self-assembly processes

    Get PDF
    We report the synthesis and self-assembly of chiral, conformationally flexible C3-symmetrical trisamides. A strong Cotton effect is observed for the supramolecular polymers in linear alkanes but not in cyclic alkanes. MD simulations suggest 2:1 conformations of the amides within the aggregates in both types of solvents, but a chiral bias in only linear alkanes.JAB, MGI, RPAG, EWM and ARAP would like to thank the Gravity program 024.001.035, NWO TOP-PUNT 718.014.003 for financial support and Anneloes Oude Vrielink for TEM imaging. FDM and ML acknowledge the Swedish e-Research Center (SeRC) for financial support, the Swedish Research Council (Grant No. 621-2014-4646), SNIC (Swedish National Infrastructure for Computing) and Dr Julien Idé for providing the code for exciton coupling calculations

    Expanded phenotype of AARS1-related white matter disease.

    Get PDF
    Purpose Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. Methods A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. Results We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile–onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile–onset and late-onset phenotypes. Conclusion We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile–onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome

    A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct from Kabuki syndrome

    Get PDF
    Purpose: To investigate if specific exon 38 or 39 KMT2D missense variants (MVs) cause a condition distinct from Kabuki syndrome type 1 (KS1). Methods: Multiple individuals, with MVs in exons 38 or 39 of KMT2D that encode a highly conserved region of 54 amino acids flanked by Val3527 and Lys3583, were identified and phenotyped. Functional tests were performed to study their pathogenicity and understand the disease mechanism. Results: The consistent clinical features of the affected individuals, from seven unrelated families, included choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. None of the individuals had intellectual disability. The frequency of clinical features, objective software-based facial analysis metrics, and genome-wide peripheral blood DNA methylation patterns in these patients were significantly different from that of KS1. Circular dichroism spectroscopy indicated that these MVs perturb KMT2D secondary structure through an increased disordered to ɑ-helical transition. Conclusion: KMT2D MVs located in a specific region spanning exons 38 and 39 and affecting highly conserved residues cause a novel multiple malformations syndrome distinct from KS1. Unlike KMT2D haploinsufficiency in KS1, these MVs likely result in disease through a dominant negative mechanism.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.16-17/10/Newlife - The Charity for Disabled Children FS/13/32/30069/BHF_/British Heart Foundation/United Kingdom 72160007/Chile's National Commission for Scientific and Technological Research MR/K011154/1/MRC_/Medical Research Council/United Kingdom WT_/Wellcome Trust/United Kingdompre-prin

    Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing.

    Get PDF
    OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd

    Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene

    Get PDF
    BACKGROUND: Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. METHODS AND FINDINGS: We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic β-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth. CONCLUSIONS: HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life

    Fault-tolerant grid-based solvers: Combining concepts from sparse grids and MapReduce

    Get PDF
    A key issue confronting petascale and exascale computing is the growth in probability of soft and hard faults with increasing system size. A promising approach to this problem is the use of algorithms that are inherently fault tolerant. We introduce such an algorithm for the solution of partial differential equations, based on the sparse grid approach. Here, the solution of multiple component grids are efficiently combined to achieve a solution on a full grid. The technique also lends itself to a (modified) MapReduce framework on a cluster of processors, with the map stage corresponding to allocating each component grid for solution over a subset of the processors, and the reduce stage corresponding to their combination. We describe how the sparse grid combination method can be modified to robustly solve partial differential equations in the presence of faults. This is based on a modified combination formula that can accommodate the loss of one or two component grids. We also discuss accuracy issues associated with this formula. We give details of a prototype implementation within a MapReduce framework using the dynamic process features and asynchronous message passing facilities of MPI. Results on a two-dimensional advection problem show that the errors after the loss of one or two sub-grids are within a factor of 3 of the sparse grid solution in the presence of no faults. They also indicate that the sparse grid technique with four times the resolution has approximately the same error as a full grid, while requiring (for a sufficiently high resolution) much lower computation and memory requirements. We finally outline a MapReduce variant capable of responding to faults in ways other than re-scheduling of failed tasks. We discuss the likely software requirements for such a flexible MapReduce framework, the requirements it will impose on users’ legacy codes, and the system's runtime behavior.J. W. Larson, M. Hegland, B. Harding, S. Roberts, L. Stals, A. P. Rendell, P. Strazdins, M. M. Ali, C. Kowitz, R. Nobes, J. Southern, N. Wilson, M. Li, Y. Oish

    CVD diamond coated silicon nitride self-mated systems : tribological behaviour under high loads

    Get PDF
    Friction and wear behaviour of self-mated chemical vapour deposited (CVD) diamond films coating silicon nitride ceramics (Si3N4) were investigated in ambient atmosphere. The tribological tests were conducted in a reciprocal motion ball-on-flat type tribometer under applied normal loads up to 80 N (~10 GPa). Several characterisation techniques - including scanning electron microscopy (SEM), atomic force microscopy (AFM) and micro-Raman studies - were used in order to assess the quality, stress state and wear resistance of the coatings. In addition, a novel method is presented to estimate the wear coefficient of the diamond coated flat specimens from AFM and optical microscopy (OM) observations of the wear tracks

    ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling performance using the ICR142 NGS validation series.

    Get PDF
    Evaluating, optimising and benchmarking of next generation sequencing (NGS) variant calling performance are essential requirements for clinical, commercial and academic NGS pipelines. Such assessments should be performed in a consistent, transparent and reproducible fashion, using independently, orthogonally generated data. Here we present ICR142 Benchmarker, a tool to generate outputs for assessing germline base substitution and indel calling performance using the ICR142 NGS validation series, a dataset of Illumina platform-based exome sequence data from 142 samples together with Sanger sequence data at 704 sites. ICR142 Benchmarker provides summary and detailed information on the sensitivity, specificity and false detection rates of variant callers. ICR142 Benchmarker also automatically generates a single page report highlighting key performance metrics and how performance compares to widely-used open-source tools. We used ICR142 Benchmarker with VCF files outputted by GATK, OpEx and DeepVariant to create a benchmark for variant calling performance. This evaluation revealed pipeline-specific differences and shared challenges in variant calling, for example in detecting indels in short repeating sequence motifs. We next used ICR142 Benchmarker to perform regression testing with DeepVariant versions 0.5.2 and 0.6.1. This showed that v0.6.1 improves variant calling performance, but there was evidence of minor changes in indel calling behaviour that may benefit from attention. The data also allowed us to evaluate filters to optimise DeepVariant calling, and we recommend using 30 as the QUAL threshold for base substitution calls when using DeepVariant v0.6.1. Finally, we used ICR142 Benchmarker with VCF files from two commercial variant calling providers to facilitate optimisation of their in-house pipelines and to provide transparent benchmarking of their performance. ICR142 Benchmarker consistently and transparently analyses variant calling performance based on the ICR142 NGS validation series, using the standard VCF input and outputting informative metrics to enable user understanding of pipeline performance. ICR142 Benchmarker is freely available at https://github.com/RahmanTeamDevelopment/ICR142_Benchmarker/releases.This article is freely available online from the publisher's site via Open Access

    Targeted DNA sequencing to identify genetic aberrations in glioblastoma that underlie venous thromboembolism; a cohort study

    Get PDF
    Background and objectives: Patients with glioblastoma have a high risk of developing venous thromboembolism (VTE). However, the role of underlying genetic risk factors remains largely unknown. Therefore, the aim of this study was to discover whether genetic aberrations in glioblastoma associate with VTE risk.Methods: In this cohort study, all consecutive patients diagnosed with glioblastoma in two Dutch hospitals be-tween February 2017 and August 2020 were included. Targeted DNA next-generation sequencing of all glio-blastomas was performed for diagnostic purposes and included mutational status of the genes ATRX, BRAF, CIC, FUBP1, H3F3A, IDH1, IDH2, PIK3CA, PTEN and TP53 and amplification/gain or deletion of BRAF, CDKN2A, EGFR, NOTCH1 and PTEN. The primary outcome was VTE within three months before glioblastoma diagnosis until two years after. Cumulative incidences were determined using competing risk analysis adjusting for mor-tality. Univariable Cox regression analysis was performed to determine hazard ratios.Results: From 324 patients with glioblastoma, 25 were diagnosed with VTE. Patients with a CDKN2A deletion had a 12-month adjusted cumulative incidence of VTE of 12.5 % (95%CI: 7.3-19.3) compared with 5.4 % (95%CI: 2.6-9.6) in patients with CDKN2A wildtype (p = 0.020), corresponding to a HR of 2.53 (95%CI: 1.12-5.73, p = 0.026). No significant associations were found between any of the other investigated genes and VTE.Conclusion: This study suggests a potential role for CDKN2A deletion in glioblastoma-related VTE. Therefore, once independently validated, CDKN2A mutational status may be a promising predictor to identify glioblastoma patients at high risk for VTE, who may benefit from thromboprophylaxis
    corecore