5 research outputs found
decay of and the systematics of the low-lying level structure of neutron-rich odd- Cu isotopes
International audienceBackground: Detailed spectroscopy of neutron-rich odd-A Cu isotopes is of great importance for studying the shell evolution in the region of Ni78. While there is experimental information on excited states in Cu69−73,77,79 isotopes, the information concerning Cu75 is very limited. Purpose: Experimentally observed single-particle, core-coupling, and proton-hole intruder states in Cu75, will complete the systematics of these states in the chain of isotopes. Method: Excited states in Cu75 were populated in the β decay of Ni75 isotopes. The Ni nuclei were produced by the in-flight fission of U238 projectiles, and were separated, identified, and implanted in a highly segmented Si detector array for the detection of the β-decay electrons. The β-delayed γ rays were detected in a HPGe cluster array. Monte Carlo shell model calculations were performed using the A3DA interaction built on the pfg9/2d5/2 model space for both neutrons and protons. Results: A level scheme of Cu75 was built up to ≈4 MeV by performing a γ-γ coincidence analysis. The excited states below 2 MeV were interpreted based on the systematics of neutron-rich odd-A Cu isotopes and the results of the shell model calculations. Conclusions: The evolution of the single-particle, core-coupling, and proton-hole intruder states in the chain of neutron-rich odd-A Cu isotopes is discussed in the present work, in connection with the newly observed level structure of Cu75
Improving profitability of optimal mean setting with multiple feature means for dual quality characteristics
First ß-Delayed Two-Neutron Spectroscopy of the r-Process Nucleus 134In and Observation of the i13/2 Single-Particle Neutron State in 133Sn
Inverse odd-even staggering in nuclear charge radii and possible octupole collectivity in $^217,218,219At revealed by in-source laser spectroscopy
International audienceHyperfine-structure parameters and isotope shifts for the 795-nm atomic transitions in At have been measured at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy technique. Magnetic dipole and electric quadrupole moments, and changes in the nuclear mean-square charge radii, have been deduced. A large inverse odd-even staggering in radii, which may be associated with the presence of octupole collectivity, has been observed. Namely, the radius of the odd-odd isotope At has been found to be larger than the average of its even- neighbors, At. The discrepancy between the additivity-rule prediction and experimental data for the magnetic moment of At also supports the possible presence of octupole collectivity in the considered nuclei
